Properties

Label 1440.5010.18.a1.a1
Order $ 2^{4} \cdot 5 $
Index $ 2 \cdot 3^{2} $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$Q_8\times D_5$
Order: \(80\)\(\medspace = 2^{4} \cdot 5 \)
Index: \(18\)\(\medspace = 2 \cdot 3^{2} \)
Exponent: \(20\)\(\medspace = 2^{2} \cdot 5 \)
Generators: $a, c^{15}, c^{30}, b^{6}, c^{12}$ Copy content Toggle raw display
Derived length: $2$

The subgroup is nonabelian, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, and metabelian.

Ambient group ($G$) information

Description: $C_{30}.(C_4\times D_6)$
Order: \(1440\)\(\medspace = 2^{5} \cdot 3^{2} \cdot 5 \)
Exponent: \(60\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \)
Derived length:$2$

The ambient group is nonabelian, supersolvable (hence solvable and monomial), and metabelian.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$(C_6\times S_3\times D_5).C_2^5$
$\operatorname{Aut}(H)$ $C_2\times F_5\times S_4$, of order \(960\)\(\medspace = 2^{6} \cdot 3 \cdot 5 \)
$\operatorname{res}(S)$$D_4\times F_5$, of order \(160\)\(\medspace = 2^{5} \cdot 5 \)
$\card{\operatorname{ker}(\operatorname{res})}$\(24\)\(\medspace = 2^{3} \cdot 3 \)
$W$$C_2^2\times F_5$, of order \(80\)\(\medspace = 2^{4} \cdot 5 \)

Related subgroups

Centralizer:$C_6$
Normalizer:$C_{15}:C_4\times Q_8$
Normal closure:$C_{12}.D_{10}$
Core:$C_4\times D_5$
Minimal over-subgroups:$C_{12}.D_{10}$$C_{12}.D_{10}$$Q_8\times F_5$
Maximal under-subgroups:$C_4\times D_5$$C_4\times D_5$$C_4\times D_5$$C_5\times Q_8$$C_5:Q_8$$C_5:Q_8$$C_5:Q_8$$C_2\times Q_8$

Other information

Number of subgroups in this conjugacy class$3$
Möbius function$-3$
Projective image$D_{10}.S_3^2$