Subgroup ($H$) information
| Description: | $C_2\times C_4$ |
| Order: | \(8\)\(\medspace = 2^{3} \) |
| Index: | \(180\)\(\medspace = 2^{2} \cdot 3^{2} \cdot 5 \) |
| Exponent: | \(4\)\(\medspace = 2^{2} \) |
| Generators: |
$b^{6}, c^{45}$
|
| Nilpotency class: | $1$ |
| Derived length: | $1$ |
The subgroup is normal, central (hence abelian, nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), a $p$-group (hence elementary and hyperelementary), and metacyclic.
Ambient group ($G$) information
| Description: | $C_{12}^2:C_{10}$ |
| Order: | \(1440\)\(\medspace = 2^{5} \cdot 3^{2} \cdot 5 \) |
| Exponent: | \(60\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \) |
| Derived length: | $2$ |
The ambient group is nonabelian, supersolvable (hence solvable and monomial), metabelian, and an A-group.
Quotient group ($Q$) structure
| Description: | $C_{30}:S_3$ |
| Order: | \(180\)\(\medspace = 2^{2} \cdot 3^{2} \cdot 5 \) |
| Exponent: | \(30\)\(\medspace = 2 \cdot 3 \cdot 5 \) |
| Automorphism Group: | $(C_6\times C_{12}):\GL(2,3)$, of order \(3456\)\(\medspace = 2^{7} \cdot 3^{3} \) |
| Outer Automorphisms: | $C_2^4.D_6$, of order \(192\)\(\medspace = 2^{6} \cdot 3 \) |
| Nilpotency class: | $-1$ |
| Derived length: | $2$ |
The quotient is nonabelian, supersolvable (hence solvable and monomial), metabelian, and an A-group.
Automorphism information
While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.
| $\operatorname{Aut}(G)$ | $C_4\times C_2^4:C_3.D_4\times \AGL(2,3)$ |
| $\operatorname{Aut}(H)$ | $D_4$, of order \(8\)\(\medspace = 2^{3} \) |
| $\operatorname{res}(S)$ | $D_4$, of order \(8\)\(\medspace = 2^{3} \) |
| $\card{\operatorname{ker}(\operatorname{res})}$ | \(27648\)\(\medspace = 2^{10} \cdot 3^{3} \) |
| $W$ | $C_1$, of order $1$ |
Related subgroups
| Centralizer: | $C_{12}^2:C_{10}$ | ||||
| Normalizer: | $C_{12}^2:C_{10}$ | ||||
| Minimal over-subgroups: | $C_2\times C_{20}$ | $C_2\times C_{12}$ | $C_4^2$ | $C_2^2\times C_4$ | $C_4^2$ |
| Maximal under-subgroups: | $C_4$ | $C_2^2$ |
Other information
| Number of subgroups in this autjugacy class | $3$ |
| Number of conjugacy classes in this autjugacy class | $3$ |
| Möbius function | $-54$ |
| Projective image | $C_{30}:S_3$ |