Properties

Label 1440.4199.480.b1
Order $ 3 $
Index $ 2^{5} \cdot 3 \cdot 5 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_3$
Order: \(3\)
Index: \(480\)\(\medspace = 2^{5} \cdot 3 \cdot 5 \)
Exponent: \(3\)
Generators: $c^{40}$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is the commutator subgroup (hence characteristic and normal), a semidirect factor, cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary, hyperelementary, metacyclic, metabelian, a Z-group, and an A-group), a $p$-group, and simple.

Ambient group ($G$) information

Description: $C_{12}^2:C_{10}$
Order: \(1440\)\(\medspace = 2^{5} \cdot 3^{2} \cdot 5 \)
Exponent: \(60\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \)
Derived length:$2$

The ambient group is nonabelian, supersolvable (hence solvable and monomial), metabelian, and an A-group.

Quotient group ($Q$) structure

Description: $C_2\times C_4\times C_{60}$
Order: \(480\)\(\medspace = 2^{5} \cdot 3 \cdot 5 \)
Exponent: \(60\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \)
Automorphism Group: $C_2\times C_4\times C_2^6.S_4$
Outer Automorphisms: $C_2\times C_4\times C_2^6.S_4$
Nilpotency class: $1$
Derived length: $1$

The quotient is abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group) and elementary for $p = 2$ (hence hyperelementary).

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$C_2\times C_4\times C_2^4:C_3.D_4\times S_3$
$\operatorname{Aut}(H)$ $C_2$, of order \(2\)
$\operatorname{res}(\operatorname{Aut}(G))$$C_2$, of order \(2\)
$\card{\operatorname{ker}(\operatorname{res})}$\(9216\)\(\medspace = 2^{10} \cdot 3^{2} \)
$W$$C_2$, of order \(2\)

Related subgroups

Centralizer:$C_{12}\times C_{60}$
Normalizer:$C_{12}^2:C_{10}$
Complements:$C_2\times C_4\times C_{60}$
Minimal over-subgroups:$C_{15}$$C_3^2$$C_6$$S_3$
Maximal under-subgroups:$C_1$

Other information

Number of conjugacy classes in this autjugacy class$1$
Möbius function$0$
Projective image$C_{12}^2:C_{10}$