Properties

Label 1440.3398.8.e1.b1
Order $ 2^{2} \cdot 3^{2} \cdot 5 $
Index $ 2^{3} $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_3:C_{60}$
Order: \(180\)\(\medspace = 2^{2} \cdot 3^{2} \cdot 5 \)
Index: \(8\)\(\medspace = 2^{3} \)
Exponent: \(60\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \)
Generators: $ac^{45}, c^{24}, c^{60}, c^{80}, b^{2}c^{60}$ Copy content Toggle raw display
Derived length: $2$

The subgroup is nonabelian, metacyclic (hence solvable, supersolvable, monomial, and metabelian), and an A-group.

Ambient group ($G$) information

Description: $C_{120}.D_6$
Order: \(1440\)\(\medspace = 2^{5} \cdot 3^{2} \cdot 5 \)
Exponent: \(120\)\(\medspace = 2^{3} \cdot 3 \cdot 5 \)
Derived length:$2$

The ambient group is nonabelian, supersolvable (hence solvable and monomial), and metabelian.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$(C_4^2\times C_3:S_3).C_2^5$
$\operatorname{Aut}(H)$ $C_{12}:C_2^3$, of order \(96\)\(\medspace = 2^{5} \cdot 3 \)
$\operatorname{res}(S)$$C_{12}:C_2^3$, of order \(96\)\(\medspace = 2^{5} \cdot 3 \)
$\card{\operatorname{ker}(\operatorname{res})}$\(24\)\(\medspace = 2^{3} \cdot 3 \)
$W$$C_2\times D_6$, of order \(24\)\(\medspace = 2^{3} \cdot 3 \)

Related subgroups

Centralizer:$C_{30}$
Normalizer:$C_{60}.D_6$
Normal closure:$C_{12}.C_{30}$
Core:$C_3\times C_{30}$
Minimal over-subgroups:$C_{12}.C_{30}$$C_{15}:D_{12}$$C_{30}.D_6$
Maximal under-subgroups:$C_3\times C_{30}$$C_{60}$$C_3:C_{20}$$C_3:C_{12}$
Autjugate subgroups:1440.3398.8.e1.a1

Other information

Number of subgroups in this conjugacy class$2$
Möbius function$0$
Projective image$C_{12}:D_6$