Subgroup ($H$) information
| Description: | $C_{30}:S_3$ |
| Order: | \(180\)\(\medspace = 2^{2} \cdot 3^{2} \cdot 5 \) |
| Index: | \(8\)\(\medspace = 2^{3} \) |
| Exponent: | \(30\)\(\medspace = 2 \cdot 3 \cdot 5 \) |
| Generators: |
$abc^{30}, c^{24}, b^{2}c^{60}, c^{60}, c^{80}$
|
| Derived length: | $2$ |
The subgroup is characteristic (hence normal), nonabelian, supersolvable (hence solvable and monomial), metabelian, and an A-group.
Ambient group ($G$) information
| Description: | $C_{120}.D_6$ |
| Order: | \(1440\)\(\medspace = 2^{5} \cdot 3^{2} \cdot 5 \) |
| Exponent: | \(120\)\(\medspace = 2^{3} \cdot 3 \cdot 5 \) |
| Derived length: | $2$ |
The ambient group is nonabelian, supersolvable (hence solvable and monomial), and metabelian.
Quotient group ($Q$) structure
| Description: | $D_4$ |
| Order: | \(8\)\(\medspace = 2^{3} \) |
| Exponent: | \(4\)\(\medspace = 2^{2} \) |
| Automorphism Group: | $D_4$, of order \(8\)\(\medspace = 2^{3} \) |
| Outer Automorphisms: | $C_2$, of order \(2\) |
| Derived length: | $2$ |
The quotient is nonabelian, a $p$-group (hence nilpotent, solvable, supersolvable, monomial, elementary, and hyperelementary), metacyclic (hence metabelian), and rational.
Automorphism information
Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.
| $\operatorname{Aut}(G)$ | $(C_4^2\times C_3:S_3).C_2^5$ |
| $\operatorname{Aut}(H)$ | $(C_6\times C_{12}):\GL(2,3)$, of order \(3456\)\(\medspace = 2^{7} \cdot 3^{3} \) |
| $\operatorname{res}(\operatorname{Aut}(G))$ | $D_6^2.C_2^2$, of order \(576\)\(\medspace = 2^{6} \cdot 3^{2} \) |
| $\card{\operatorname{ker}(\operatorname{res})}$ | \(16\)\(\medspace = 2^{4} \) |
| $W$ | $S_3^2$, of order \(36\)\(\medspace = 2^{2} \cdot 3^{2} \) |
Related subgroups
Other information
| Möbius function | $0$ |
| Projective image | $C_{12}:D_6$ |