Properties

Label 1440.3398.8.a1.a1
Order $ 2^{2} \cdot 3^{2} \cdot 5 $
Index $ 2^{3} $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_{30}:S_3$
Order: \(180\)\(\medspace = 2^{2} \cdot 3^{2} \cdot 5 \)
Index: \(8\)\(\medspace = 2^{3} \)
Exponent: \(30\)\(\medspace = 2 \cdot 3 \cdot 5 \)
Generators: $abc^{30}, c^{24}, b^{2}c^{60}, c^{60}, c^{80}$ Copy content Toggle raw display
Derived length: $2$

The subgroup is characteristic (hence normal), nonabelian, supersolvable (hence solvable and monomial), metabelian, and an A-group.

Ambient group ($G$) information

Description: $C_{120}.D_6$
Order: \(1440\)\(\medspace = 2^{5} \cdot 3^{2} \cdot 5 \)
Exponent: \(120\)\(\medspace = 2^{3} \cdot 3 \cdot 5 \)
Derived length:$2$

The ambient group is nonabelian, supersolvable (hence solvable and monomial), and metabelian.

Quotient group ($Q$) structure

Description: $D_4$
Order: \(8\)\(\medspace = 2^{3} \)
Exponent: \(4\)\(\medspace = 2^{2} \)
Automorphism Group: $D_4$, of order \(8\)\(\medspace = 2^{3} \)
Outer Automorphisms: $C_2$, of order \(2\)
Derived length: $2$

The quotient is nonabelian, a $p$-group (hence nilpotent, solvable, supersolvable, monomial, elementary, and hyperelementary), metacyclic (hence metabelian), and rational.

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$(C_4^2\times C_3:S_3).C_2^5$
$\operatorname{Aut}(H)$ $(C_6\times C_{12}):\GL(2,3)$, of order \(3456\)\(\medspace = 2^{7} \cdot 3^{3} \)
$\operatorname{res}(\operatorname{Aut}(G))$$D_6^2.C_2^2$, of order \(576\)\(\medspace = 2^{6} \cdot 3^{2} \)
$\card{\operatorname{ker}(\operatorname{res})}$\(16\)\(\medspace = 2^{4} \)
$W$$S_3^2$, of order \(36\)\(\medspace = 2^{2} \cdot 3^{2} \)

Related subgroups

Centralizer:$C_{40}$
Normalizer:$C_{120}.D_6$
Minimal over-subgroups:$C_{60}:S_3$$C_{15}:D_{12}$$C_{15}:D_{12}$
Maximal under-subgroups:$C_3\times C_{30}$$C_{15}:S_3$$S_3\times C_{10}$$S_3\times C_{10}$$S_3\times C_{10}$$C_6:S_3$

Other information

Möbius function$0$
Projective image$C_{12}:D_6$