Properties

Label 1440.3398.12.k1.a1
Order $ 2^{3} \cdot 3 \cdot 5 $
Index $ 2^{2} \cdot 3 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$Q_8\times C_{15}$
Order: \(120\)\(\medspace = 2^{3} \cdot 3 \cdot 5 \)
Index: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Exponent: \(60\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \)
Generators: $b^{3}, b^{2}c^{60}, c^{24}, c^{90}, c^{60}$ Copy content Toggle raw display
Nilpotency class: $2$
Derived length: $2$

The subgroup is nonabelian, elementary for $p = 2$ (hence nilpotent, solvable, supersolvable, monomial, and hyperelementary), and metacyclic (hence metabelian).

Ambient group ($G$) information

Description: $C_{120}.D_6$
Order: \(1440\)\(\medspace = 2^{5} \cdot 3^{2} \cdot 5 \)
Exponent: \(120\)\(\medspace = 2^{3} \cdot 3 \cdot 5 \)
Derived length:$2$

The ambient group is nonabelian, supersolvable (hence solvable and monomial), and metabelian.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$(C_4^2\times C_3:S_3).C_2^5$
$\operatorname{Aut}(H)$ $C_2^4.D_6$, of order \(192\)\(\medspace = 2^{6} \cdot 3 \)
$\operatorname{res}(S)$$C_4^2:C_2^2$, of order \(64\)\(\medspace = 2^{6} \)
$\card{\operatorname{ker}(\operatorname{res})}$\(24\)\(\medspace = 2^{3} \cdot 3 \)
$W$$C_2\times D_4$, of order \(16\)\(\medspace = 2^{4} \)

Related subgroups

Centralizer:$C_{30}$
Normalizer:$C_{40}.D_6$
Normal closure:$C_{12}.C_{30}$
Core:$C_{60}$
Minimal over-subgroups:$C_{12}.C_{30}$$C_{15}\times \SD_{16}$$D_{12}:C_{10}$$C_{15}:Q_{16}$
Maximal under-subgroups:$C_{60}$$C_{60}$$C_5\times Q_8$$C_3\times Q_8$
Autjugate subgroups:1440.3398.12.k1.b1

Other information

Number of subgroups in this conjugacy class$3$
Möbius function$-2$
Projective image$C_{12}:D_6$