Subgroup ($H$) information
Description: | $C_2\times A_4$ |
Order: | \(24\)\(\medspace = 2^{3} \cdot 3 \) |
Index: | \(60\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \) |
Exponent: | \(6\)\(\medspace = 2 \cdot 3 \) |
Generators: |
$a^{4}, b^{10}d^{4}, c, d^{3}$
|
Derived length: | $2$ |
The subgroup is normal, nonabelian, monomial (hence solvable), metabelian, and an A-group.
Ambient group ($G$) information
Description: | $C_{60}.S_4$ |
Order: | \(1440\)\(\medspace = 2^{5} \cdot 3^{2} \cdot 5 \) |
Exponent: | \(120\)\(\medspace = 2^{3} \cdot 3 \cdot 5 \) |
Derived length: | $3$ |
The ambient group is nonabelian and monomial (hence solvable).
Quotient group ($Q$) structure
Description: | $C_{15}:C_4$ |
Order: | \(60\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \) |
Exponent: | \(60\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \) |
Automorphism Group: | $D_6\times F_5$, of order \(240\)\(\medspace = 2^{4} \cdot 3 \cdot 5 \) |
Outer Automorphisms: | $C_2\times C_4$, of order \(8\)\(\medspace = 2^{3} \) |
Derived length: | $2$ |
The quotient is nonabelian, a Z-group (hence solvable, supersolvable, monomial, metacyclic, metabelian, and an A-group), and hyperelementary for $p = 2$.
Automorphism information
While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.
$\operatorname{Aut}(G)$ | $C_2^2\times F_5\times C_3:S_3:S_4$ |
$\operatorname{Aut}(H)$ | $S_4$, of order \(24\)\(\medspace = 2^{3} \cdot 3 \) |
$\operatorname{res}(S)$ | $S_4$, of order \(24\)\(\medspace = 2^{3} \cdot 3 \) |
$\card{\operatorname{ker}(\operatorname{res})}$ | \(480\)\(\medspace = 2^{5} \cdot 3 \cdot 5 \) |
$W$ | $S_4$, of order \(24\)\(\medspace = 2^{3} \cdot 3 \) |
Related subgroups
Other information
Möbius function | $0$ |
Projective image | $C_{30}.S_4$ |