Subgroup ($H$) information
| Description: | $C_3\times D_{10}$ |
| Order: | \(60\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \) |
| Index: | \(24\)\(\medspace = 2^{3} \cdot 3 \) |
| Exponent: | \(30\)\(\medspace = 2 \cdot 3 \cdot 5 \) |
| Generators: |
$ab^{2}c^{57}, c^{40}, c^{12}, c^{30}$
|
| Derived length: | $2$ |
The subgroup is nonabelian, metacyclic (hence solvable, supersolvable, monomial, and metabelian), hyperelementary for $p = 2$, and an A-group.
Ambient group ($G$) information
| Description: | $C_3^2:(C_4\times D_{20})$ |
| Order: | \(1440\)\(\medspace = 2^{5} \cdot 3^{2} \cdot 5 \) |
| Exponent: | \(60\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \) |
| Derived length: | $2$ |
The ambient group is nonabelian, supersolvable (hence solvable and monomial), and metabelian.
Automorphism information
While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.
| $\operatorname{Aut}(G)$ | $D_6^2.C_2^4\times F_5$ |
| $\operatorname{Aut}(H)$ | $C_2^2\times F_5$, of order \(80\)\(\medspace = 2^{4} \cdot 5 \) |
| $\operatorname{res}(S)$ | $C_2^2\times F_5$, of order \(80\)\(\medspace = 2^{4} \cdot 5 \) |
| $\card{\operatorname{ker}(\operatorname{res})}$ | \(96\)\(\medspace = 2^{5} \cdot 3 \) |
| $W$ | $C_2\times D_{10}$, of order \(40\)\(\medspace = 2^{3} \cdot 5 \) |
Related subgroups
Other information
| Number of subgroups in this conjugacy class | $3$ |
| Möbius function | $0$ |
| Projective image | $D_{30}.D_6$ |