Properties

Label 1440.1361.360.b1
Order $ 2^{2} $
Index $ 2^{3} \cdot 3^{2} \cdot 5 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_4$
Order: \(4\)\(\medspace = 2^{2} \)
Index: \(360\)\(\medspace = 2^{3} \cdot 3^{2} \cdot 5 \)
Exponent: \(4\)\(\medspace = 2^{2} \)
Generators: $a^{2}b^{6}$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is normal, cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary, hyperelementary, metacyclic, metabelian, a Z-group, and an A-group), central, and a $p$-group.

Ambient group ($G$) information

Description: $C_{12}^2.C_{10}$
Order: \(1440\)\(\medspace = 2^{5} \cdot 3^{2} \cdot 5 \)
Exponent: \(120\)\(\medspace = 2^{3} \cdot 3 \cdot 5 \)
Derived length:$2$

The ambient group is nonabelian, supersolvable (hence solvable and monomial), metabelian, and an A-group.

Quotient group ($Q$) structure

Description: $C_{60}:S_3$
Order: \(360\)\(\medspace = 2^{3} \cdot 3^{2} \cdot 5 \)
Exponent: \(60\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \)
Automorphism Group: $C_2^2\times C_4\times \AGL(2,3)$
Outer Automorphisms: $C_2^5.D_6$, of order \(384\)\(\medspace = 2^{7} \cdot 3 \)
Nilpotency class: $-1$
Derived length: $2$

The quotient is nonabelian, supersolvable (hence solvable and monomial), metabelian, and an A-group.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$\ASL(2,3).C_2^6.C_2^4$
$\operatorname{Aut}(H)$ $C_2$, of order \(2\)
$\operatorname{res}(S)$$C_2$, of order \(2\)
$\card{\operatorname{ker}(\operatorname{res})}$\(55296\)\(\medspace = 2^{11} \cdot 3^{3} \)
$W$$C_1$, of order $1$

Related subgroups

Centralizer:$C_{12}^2.C_{10}$
Normalizer:$C_{12}^2.C_{10}$
Minimal over-subgroups:$C_{20}$$C_{12}$$C_2\times C_4$$C_8$
Maximal under-subgroups:$C_2$

Other information

Number of subgroups in this autjugacy class$2$
Number of conjugacy classes in this autjugacy class$2$
Möbius function$0$
Projective image$C_{60}:S_3$