Properties

Label 1417176.hp.1944.D
Order $ 3^{6} $
Index $ 2^{3} \cdot 3^{5} $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_3^6$
Order: \(729\)\(\medspace = 3^{6} \)
Index: \(1944\)\(\medspace = 2^{3} \cdot 3^{5} \)
Exponent: \(3\)
Generators: $\langle(1,2,3)(4,5,6)(7,9,8)(10,11,12)(13,14,15)(16,18,17)(19,21,20)(22,24,23) \!\cdots\! \rangle$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is characteristic (hence normal), abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), and a $p$-group (hence elementary and hyperelementary). Whether it is a direct factor or a semidirect factor has not been computed.

Ambient group ($G$) information

Description: $C_3^8.S_3^3$
Order: \(1417176\)\(\medspace = 2^{3} \cdot 3^{11} \)
Exponent: \(18\)\(\medspace = 2 \cdot 3^{2} \)
Derived length:$3$

The ambient group is nonabelian and supersolvable (hence solvable and monomial).

Quotient group ($Q$) structure

Description: $C_2\times C_9^2:D_6$
Order: \(1944\)\(\medspace = 2^{3} \cdot 3^{5} \)
Exponent: \(18\)\(\medspace = 2 \cdot 3^{2} \)
Automorphism Group: $C_9^2.C_6^2.C_6.C_2^2$
Outer Automorphisms: $C_6\wr C_2$, of order \(72\)\(\medspace = 2^{3} \cdot 3^{2} \)
Nilpotency class: $-1$
Derived length: $3$

The quotient is nonabelian and supersolvable (hence solvable and monomial).

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$C_3^6.C_3^5.C_6^2.C_6^2.C_2$
$\operatorname{Aut}(H)$ $\GL(6,3)$, of order \(84129611558952960\)\(\medspace = 2^{13} \cdot 3^{15} \cdot 5 \cdot 7 \cdot 11^{2} \cdot 13^{2} \)
$W$$S_3\times D_6$, of order \(72\)\(\medspace = 2^{3} \cdot 3^{2} \)

Related subgroups

Centralizer:$C_3^9$
Normalizer:$C_3^8.S_3^3$

Other information

Number of conjugacy classes in this autjugacy class$1$
Möbius function not computed
Projective image$C_3^8.S_3^3$