Subgroup ($H$) information
| Description: | $C_3^6$ |
| Order: | \(729\)\(\medspace = 3^{6} \) |
| Index: | \(1944\)\(\medspace = 2^{3} \cdot 3^{5} \) |
| Exponent: | \(3\) |
| Generators: |
$\langle(1,2,3)(4,5,6)(7,9,8)(10,11,12)(13,14,15)(16,18,17)(19,21,20)(22,24,23) \!\cdots\! \rangle$
|
| Nilpotency class: | $1$ |
| Derived length: | $1$ |
The subgroup is characteristic (hence normal), abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), and a $p$-group (hence elementary and hyperelementary). Whether it is a direct factor or a semidirect factor has not been computed.
Ambient group ($G$) information
| Description: | $C_3^8.S_3^3$ |
| Order: | \(1417176\)\(\medspace = 2^{3} \cdot 3^{11} \) |
| Exponent: | \(18\)\(\medspace = 2 \cdot 3^{2} \) |
| Derived length: | $3$ |
The ambient group is nonabelian and supersolvable (hence solvable and monomial).
Quotient group ($Q$) structure
| Description: | $C_2\times C_9^2:D_6$ |
| Order: | \(1944\)\(\medspace = 2^{3} \cdot 3^{5} \) |
| Exponent: | \(18\)\(\medspace = 2 \cdot 3^{2} \) |
| Automorphism Group: | $C_9^2.C_6^2.C_6.C_2^2$ |
| Outer Automorphisms: | $C_6\wr C_2$, of order \(72\)\(\medspace = 2^{3} \cdot 3^{2} \) |
| Nilpotency class: | $-1$ |
| Derived length: | $3$ |
The quotient is nonabelian and supersolvable (hence solvable and monomial).
Automorphism information
Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.
| $\operatorname{Aut}(G)$ | $C_3^6.C_3^5.C_6^2.C_6^2.C_2$ |
| $\operatorname{Aut}(H)$ | $\GL(6,3)$, of order \(84129611558952960\)\(\medspace = 2^{13} \cdot 3^{15} \cdot 5 \cdot 7 \cdot 11^{2} \cdot 13^{2} \) |
| $W$ | $S_3\times D_6$, of order \(72\)\(\medspace = 2^{3} \cdot 3^{2} \) |
Related subgroups
| Centralizer: | $C_3^9$ |
| Normalizer: | $C_3^8.S_3^3$ |
Other information
| Number of conjugacy classes in this autjugacy class | $1$ |
| Möbius function | not computed |
| Projective image | $C_3^8.S_3^3$ |