Properties

Label 1408.902.8.j1.a1
Order $ 2^{4} \cdot 11 $
Index $ 2^{3} $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_{11}\times Q_{16}$
Order: \(176\)\(\medspace = 2^{4} \cdot 11 \)
Index: \(8\)\(\medspace = 2^{3} \)
Exponent: \(88\)\(\medspace = 2^{3} \cdot 11 \)
Generators: $\left(\begin{array}{rr} 81 & 0 \\ 0 & 128 \end{array}\right), \left(\begin{array}{rr} 0 & 352 \\ 1 & 0 \end{array}\right), \left(\begin{array}{rr} 352 & 0 \\ 0 & 352 \end{array}\right), \left(\begin{array}{rr} 42 & 0 \\ 0 & 311 \end{array}\right), \left(\begin{array}{rr} 136 & 0 \\ 0 & 136 \end{array}\right)$ Copy content Toggle raw display
Nilpotency class: $3$
Derived length: $2$

The subgroup is characteristic (hence normal), nonabelian, elementary for $p = 2$ (hence nilpotent, solvable, supersolvable, monomial, and hyperelementary), and metacyclic (hence metabelian).

Ambient group ($G$) information

Description: $D_8.C_{88}$
Order: \(1408\)\(\medspace = 2^{7} \cdot 11 \)
Exponent: \(176\)\(\medspace = 2^{4} \cdot 11 \)
Nilpotency class:$3$
Derived length:$2$

The ambient group is nonabelian, elementary for $p = 2$ (hence nilpotent, solvable, supersolvable, monomial, and hyperelementary), and metabelian.

Quotient group ($Q$) structure

Description: $C_8$
Order: \(8\)\(\medspace = 2^{3} \)
Exponent: \(8\)\(\medspace = 2^{3} \)
Automorphism Group: $C_2^2$, of order \(4\)\(\medspace = 2^{2} \)
Outer Automorphisms: $C_2^2$, of order \(4\)\(\medspace = 2^{2} \)
Nilpotency class: $1$
Derived length: $1$

The quotient is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary, hyperelementary, metacyclic, metabelian, a Z-group, and an A-group) and a $p$-group.

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$C_5:((C_2\times C_4).C_2^6)$
$\operatorname{Aut}(H)$ $C_{40}:C_2^3$, of order \(320\)\(\medspace = 2^{6} \cdot 5 \)
$\operatorname{res}(\operatorname{Aut}(G))$$C_{40}:C_2^3$, of order \(320\)\(\medspace = 2^{6} \cdot 5 \)
$\card{\operatorname{ker}(\operatorname{res})}$\(8\)\(\medspace = 2^{3} \)
$W$$D_4$, of order \(8\)\(\medspace = 2^{3} \)

Related subgroups

Centralizer:$C_{176}$
Normalizer:$D_8.C_{88}$
Minimal over-subgroups:$D_8:C_{22}$
Maximal under-subgroups:$Q_8\times C_{11}$$Q_8\times C_{11}$$C_{88}$$Q_{16}$

Other information

Möbius function$0$
Projective image$C_8\times D_4$