Properties

Label 1408.902.22.d1.a1
Order $ 2^{6} $
Index $ 2 \cdot 11 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_4\times C_{16}$
Order: \(64\)\(\medspace = 2^{6} \)
Index: \(22\)\(\medspace = 2 \cdot 11 \)
Exponent: \(16\)\(\medspace = 2^{4} \)
Generators: $\left(\begin{array}{rr} 352 & 0 \\ 0 & 352 \end{array}\right), \left(\begin{array}{rr} 42 & 0 \\ 0 & 311 \end{array}\right), \left(\begin{array}{rr} 1 & 0 \\ 0 & 42 \end{array}\right), \left(\begin{array}{rr} 253 & 0 \\ 0 & 253 \end{array}\right), \left(\begin{array}{rr} 1 & 0 \\ 0 & 352 \end{array}\right), \left(\begin{array}{rr} 116 & 0 \\ 0 & 116 \end{array}\right)$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is characteristic (hence normal), a semidirect factor, abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), a $p$-group (hence elementary and hyperelementary), and metacyclic.

Ambient group ($G$) information

Description: $D_8.C_{88}$
Order: \(1408\)\(\medspace = 2^{7} \cdot 11 \)
Exponent: \(176\)\(\medspace = 2^{4} \cdot 11 \)
Nilpotency class:$3$
Derived length:$2$

The ambient group is nonabelian, elementary for $p = 2$ (hence nilpotent, solvable, supersolvable, monomial, and hyperelementary), and metabelian.

Quotient group ($Q$) structure

Description: $C_{22}$
Order: \(22\)\(\medspace = 2 \cdot 11 \)
Exponent: \(22\)\(\medspace = 2 \cdot 11 \)
Automorphism Group: $C_{10}$, of order \(10\)\(\medspace = 2 \cdot 5 \)
Outer Automorphisms: $C_{10}$, of order \(10\)\(\medspace = 2 \cdot 5 \)
Nilpotency class: $1$
Derived length: $1$

The quotient is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary ($p = 2,11$), hyperelementary, metacyclic, metabelian, a Z-group, and an A-group).

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$C_5:((C_2\times C_4).C_2^6)$
$\operatorname{Aut}(H)$ $C_2^5.D_4$, of order \(256\)\(\medspace = 2^{8} \)
$\operatorname{res}(\operatorname{Aut}(G))$$C_2^3\times C_4$, of order \(32\)\(\medspace = 2^{5} \)
$\card{\operatorname{ker}(\operatorname{res})}$\(80\)\(\medspace = 2^{4} \cdot 5 \)
$W$$C_2$, of order \(2\)

Related subgroups

Centralizer:$C_4\times C_{176}$
Normalizer:$D_8.C_{88}$
Complements:$C_{22}$ $C_{22}$
Minimal over-subgroups:$C_4\times C_{176}$$C_{16}.D_4$
Maximal under-subgroups:$C_4\times C_8$$C_2\times C_{16}$$C_2\times C_{16}$

Other information

Möbius function$1$
Projective image$D_4\times C_{11}$