Properties

Label 1404.99.156.a1.a1
Order $ 3^{2} $
Index $ 2^{2} \cdot 3 \cdot 13 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_3^2$
Order: \(9\)\(\medspace = 3^{2} \)
Index: \(156\)\(\medspace = 2^{2} \cdot 3 \cdot 13 \)
Exponent: \(3\)
Generators: $b^{2}, c^{13}$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is characteristic (hence normal), a semidirect factor, abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), a $p$-group (hence elementary and hyperelementary), and metacyclic.

Ambient group ($G$) information

Description: $(C_3\times C_{78}):C_6$
Order: \(1404\)\(\medspace = 2^{2} \cdot 3^{3} \cdot 13 \)
Exponent: \(78\)\(\medspace = 2 \cdot 3 \cdot 13 \)
Derived length:$2$

The ambient group is nonabelian, supersolvable (hence solvable and monomial), and metabelian.

Quotient group ($Q$) structure

Description: $C_{26}:C_6$
Order: \(156\)\(\medspace = 2^{2} \cdot 3 \cdot 13 \)
Exponent: \(78\)\(\medspace = 2 \cdot 3 \cdot 13 \)
Automorphism Group: $C_2\times F_{13}$, of order \(312\)\(\medspace = 2^{3} \cdot 3 \cdot 13 \)
Outer Automorphisms: $C_2^2$, of order \(4\)\(\medspace = 2^{2} \)
Nilpotency class: $-1$
Derived length: $2$

The quotient is nonabelian, metacyclic (hence solvable, supersolvable, monomial, and metabelian), and an A-group.

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$C_{39}.(C_6\times C_{12}\times S_3)$
$\operatorname{Aut}(H)$ $\GL(2,3)$, of order \(48\)\(\medspace = 2^{4} \cdot 3 \)
$\operatorname{res}(\operatorname{Aut}(G))$$C_6$, of order \(6\)\(\medspace = 2 \cdot 3 \)
$\card{\operatorname{ker}(\operatorname{res})}$\(2808\)\(\medspace = 2^{3} \cdot 3^{3} \cdot 13 \)
$W$$C_6$, of order \(6\)\(\medspace = 2 \cdot 3 \)

Related subgroups

Centralizer:$C_3\times C_{78}$
Normalizer:$(C_3\times C_{78}):C_6$
Complements:$C_{26}:C_6$
Minimal over-subgroups:$C_3\times C_{39}$$\He_3$$C_3\times C_6$$C_3:S_3$$C_3:S_3$
Maximal under-subgroups:$C_3$$C_3$

Other information

Möbius function$26$
Projective image$(C_3\times C_{78}):C_6$