Properties

Label 1404.156.36.b1.c1
Order $ 3 \cdot 13 $
Index $ 2^{2} \cdot 3^{2} $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_{39}$
Order: \(39\)\(\medspace = 3 \cdot 13 \)
Index: \(36\)\(\medspace = 2^{2} \cdot 3^{2} \)
Exponent: \(39\)\(\medspace = 3 \cdot 13 \)
Generators: $bd^{26}, d^{6}$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary ($p = 3,13$), hyperelementary, metacyclic, metabelian, a Z-group, and an A-group).

Ambient group ($G$) information

Description: $C_3^2:D_{78}$
Order: \(1404\)\(\medspace = 2^{2} \cdot 3^{3} \cdot 13 \)
Exponent: \(78\)\(\medspace = 2 \cdot 3 \cdot 13 \)
Derived length:$3$

The ambient group is nonabelian and supersolvable (hence solvable and monomial).

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$\PSU(3,2).C_{39}.C_6.C_2^3$
$\operatorname{Aut}(H)$ $C_2\times C_{12}$, of order \(24\)\(\medspace = 2^{3} \cdot 3 \)
$\operatorname{res}(S)$$C_2\times C_{12}$, of order \(24\)\(\medspace = 2^{3} \cdot 3 \)
$\card{\operatorname{ker}(\operatorname{res})}$\(468\)\(\medspace = 2^{2} \cdot 3^{2} \cdot 13 \)
$W$$C_2$, of order \(2\)

Related subgroups

Centralizer:$C_3\times C_{78}$
Normalizer:$C_3\times D_{78}$
Normal closure:$C_3\times C_{39}$
Core:$C_{13}$
Minimal over-subgroups:$C_3\times C_{39}$$C_{78}$$D_{39}$$D_{39}$
Maximal under-subgroups:$C_{13}$$C_3$
Autjugate subgroups:1404.156.36.b1.a11404.156.36.b1.b11404.156.36.b1.d1

Other information

Number of subgroups in this conjugacy class$3$
Möbius function$0$
Projective image$C_3^2:D_{78}$