Subgroup ($H$) information
Description: | $C_2$ |
Order: | \(2\) |
Index: | \(700\)\(\medspace = 2^{2} \cdot 5^{2} \cdot 7 \) |
Exponent: | \(2\) |
Generators: |
$c^{35}$
|
Nilpotency class: | $1$ |
Derived length: | $1$ |
The subgroup is the center (hence characteristic, normal, abelian, central, nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), the Frattini subgroup, cyclic (hence elementary, hyperelementary, metacyclic, and a Z-group), stem, a $p$-group, simple, and rational.
Ambient group ($G$) information
Description: | $C_{10}^2:D_7$ |
Order: | \(1400\)\(\medspace = 2^{3} \cdot 5^{2} \cdot 7 \) |
Exponent: | \(140\)\(\medspace = 2^{2} \cdot 5 \cdot 7 \) |
Derived length: | $2$ |
The ambient group is nonabelian, supersolvable (hence solvable and monomial), and metabelian.
Quotient group ($Q$) structure
Description: | $C_5:D_{70}$ |
Order: | \(700\)\(\medspace = 2^{2} \cdot 5^{2} \cdot 7 \) |
Exponent: | \(70\)\(\medspace = 2 \cdot 5 \cdot 7 \) |
Automorphism Group: | $C_2\times C_5^2:C_4.S_5\times F_7$ |
Outer Automorphisms: | $C_6\times \GL(2,5)$, of order \(2880\)\(\medspace = 2^{6} \cdot 3^{2} \cdot 5 \) |
Nilpotency class: | $-1$ |
Derived length: | $2$ |
The quotient is nonabelian, supersolvable (hence solvable and monomial), metabelian, and an A-group.
Automorphism information
Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.
$\operatorname{Aut}(G)$ | $C_2^2\times C_5^2:C_4.S_5\times F_7$ |
$\operatorname{Aut}(H)$ | $C_1$, of order $1$ |
$\operatorname{res}(\operatorname{Aut}(G))$ | $C_1$, of order $1$ |
$\card{\operatorname{ker}(\operatorname{res})}$ | \(2016000\)\(\medspace = 2^{8} \cdot 3^{2} \cdot 5^{3} \cdot 7 \) |
$W$ | $C_1$, of order $1$ |
Related subgroups
Centralizer: | $C_{10}^2:D_7$ | ||||
Normalizer: | $C_{10}^2:D_7$ | ||||
Minimal over-subgroups: | $C_{14}$ | $C_{10}$ | $C_2^2$ | $C_2^2$ | $C_4$ |
Maximal under-subgroups: | $C_1$ |
Other information
Number of conjugacy classes in this autjugacy class | $1$ |
Möbius function | $-1750$ |
Projective image | $C_5:D_{70}$ |