Properties

Label 1400.110.700.a1
Order $ 2 $
Index $ 2^{2} \cdot 5^{2} \cdot 7 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_2$
Order: \(2\)
Index: \(700\)\(\medspace = 2^{2} \cdot 5^{2} \cdot 7 \)
Exponent: \(2\)
Generators: $c^{35}$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is the center (hence characteristic, normal, abelian, central, nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), the Frattini subgroup, cyclic (hence elementary, hyperelementary, metacyclic, and a Z-group), stem, a $p$-group, simple, and rational.

Ambient group ($G$) information

Description: $C_{10}^2:D_7$
Order: \(1400\)\(\medspace = 2^{3} \cdot 5^{2} \cdot 7 \)
Exponent: \(140\)\(\medspace = 2^{2} \cdot 5 \cdot 7 \)
Derived length:$2$

The ambient group is nonabelian, supersolvable (hence solvable and monomial), and metabelian.

Quotient group ($Q$) structure

Description: $C_5:D_{70}$
Order: \(700\)\(\medspace = 2^{2} \cdot 5^{2} \cdot 7 \)
Exponent: \(70\)\(\medspace = 2 \cdot 5 \cdot 7 \)
Automorphism Group: $C_2\times C_5^2:C_4.S_5\times F_7$
Outer Automorphisms: $C_6\times \GL(2,5)$, of order \(2880\)\(\medspace = 2^{6} \cdot 3^{2} \cdot 5 \)
Nilpotency class: $-1$
Derived length: $2$

The quotient is nonabelian, supersolvable (hence solvable and monomial), metabelian, and an A-group.

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$C_2^2\times C_5^2:C_4.S_5\times F_7$
$\operatorname{Aut}(H)$ $C_1$, of order $1$
$\operatorname{res}(\operatorname{Aut}(G))$$C_1$, of order $1$
$\card{\operatorname{ker}(\operatorname{res})}$\(2016000\)\(\medspace = 2^{8} \cdot 3^{2} \cdot 5^{3} \cdot 7 \)
$W$$C_1$, of order $1$

Related subgroups

Centralizer:$C_{10}^2:D_7$
Normalizer:$C_{10}^2:D_7$
Minimal over-subgroups:$C_{14}$$C_{10}$$C_2^2$$C_2^2$$C_4$
Maximal under-subgroups:$C_1$

Other information

Number of conjugacy classes in this autjugacy class$1$
Möbius function$-1750$
Projective image$C_5:D_{70}$