Properties

Label 1392.160.4.d1.b1
Order $ 2^{2} \cdot 3 \cdot 29 $
Index $ 2^{2} $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_3:C_{116}$
Order: \(348\)\(\medspace = 2^{2} \cdot 3 \cdot 29 \)
Index: \(4\)\(\medspace = 2^{2} \)
Exponent: \(348\)\(\medspace = 2^{2} \cdot 3 \cdot 29 \)
Generators: $abc^{145}, c^{6}, c^{116}, b^{2}$ Copy content Toggle raw display
Derived length: $2$

The subgroup is normal, a semidirect factor, nonabelian, a Z-group (hence solvable, supersolvable, monomial, metacyclic, metabelian, and an A-group), and hyperelementary for $p = 2$.

Ambient group ($G$) information

Description: $D_6\times C_{116}$
Order: \(1392\)\(\medspace = 2^{4} \cdot 3 \cdot 29 \)
Exponent: \(348\)\(\medspace = 2^{2} \cdot 3 \cdot 29 \)
Derived length:$2$

The ambient group is nonabelian, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, metabelian, and an A-group.

Quotient group ($Q$) structure

Description: $C_2^2$
Order: \(4\)\(\medspace = 2^{2} \)
Exponent: \(2\)
Automorphism Group: $S_3$, of order \(6\)\(\medspace = 2 \cdot 3 \)
Outer Automorphisms: $S_3$, of order \(6\)\(\medspace = 2 \cdot 3 \)
Derived length: $1$

The quotient is abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), a $p$-group (hence elementary and hyperelementary), metacyclic, and rational.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_{21}:(C_2^4.C_2^4)$
$\operatorname{Aut}(H)$ $D_6\times C_{28}$, of order \(336\)\(\medspace = 2^{4} \cdot 3 \cdot 7 \)
$\operatorname{res}(S)$$D_6\times C_{28}$, of order \(336\)\(\medspace = 2^{4} \cdot 3 \cdot 7 \)
$\card{\operatorname{ker}(\operatorname{res})}$\(8\)\(\medspace = 2^{3} \)
$W$$S_3$, of order \(6\)\(\medspace = 2 \cdot 3 \)

Related subgroups

Centralizer:$C_2\times C_{116}$
Normalizer:$D_6\times C_{116}$
Complements:$C_2^2$ $C_2^2$ $C_2^2$ $C_2^2$
Minimal over-subgroups:$C_6:C_{116}$$S_3\times C_{116}$$S_3\times C_{116}$
Maximal under-subgroups:$C_{174}$$C_{116}$$C_3:C_4$
Autjugate subgroups:1392.160.4.d1.a1

Other information

Möbius function$2$
Projective image$C_2\times D_6$