Properties

Label 1392.160.116.e1.c1
Order $ 2^{2} \cdot 3 $
Index $ 2^{2} \cdot 29 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$D_6$
Order: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Index: \(116\)\(\medspace = 2^{2} \cdot 29 \)
Exponent: \(6\)\(\medspace = 2 \cdot 3 \)
Generators: $a, b^{2}c^{87}, c^{116}$ Copy content Toggle raw display
Derived length: $2$

The subgroup is normal, a direct factor, nonabelian, metacyclic (hence solvable, supersolvable, monomial, and metabelian), hyperelementary for $p = 2$, an A-group, and rational.

Ambient group ($G$) information

Description: $D_6\times C_{116}$
Order: \(1392\)\(\medspace = 2^{4} \cdot 3 \cdot 29 \)
Exponent: \(348\)\(\medspace = 2^{2} \cdot 3 \cdot 29 \)
Derived length:$2$

The ambient group is nonabelian, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, metabelian, and an A-group.

Quotient group ($Q$) structure

Description: $C_{116}$
Order: \(116\)\(\medspace = 2^{2} \cdot 29 \)
Exponent: \(116\)\(\medspace = 2^{2} \cdot 29 \)
Automorphism Group: $C_2\times C_{28}$, of order \(56\)\(\medspace = 2^{3} \cdot 7 \)
Outer Automorphisms: $C_2\times C_{28}$, of order \(56\)\(\medspace = 2^{3} \cdot 7 \)
Derived length: $1$

The quotient is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary ($p = 2,29$), hyperelementary, metacyclic, metabelian, a Z-group, and an A-group).

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_{21}:(C_2^4.C_2^4)$
$\operatorname{Aut}(H)$ $D_6$, of order \(12\)\(\medspace = 2^{2} \cdot 3 \)
$\operatorname{res}(S)$$D_6$, of order \(12\)\(\medspace = 2^{2} \cdot 3 \)
$\card{\operatorname{ker}(\operatorname{res})}$\(112\)\(\medspace = 2^{4} \cdot 7 \)
$W$$S_3$, of order \(6\)\(\medspace = 2 \cdot 3 \)

Related subgroups

Centralizer:$C_2\times C_{116}$
Normalizer:$D_6\times C_{116}$
Complements:$C_{116}$ $C_{116}$ $C_{116}$ $C_{116}$
Minimal over-subgroups:$S_3\times C_{58}$$C_2\times D_6$
Maximal under-subgroups:$C_6$$S_3$$S_3$$C_2^2$
Autjugate subgroups:1392.160.116.e1.a11392.160.116.e1.b11392.160.116.e1.d1

Other information

Möbius function$0$
Projective image$S_3\times C_{116}$