Properties

Label 13824.hc.144.C
Order $ 2^{5} \cdot 3 $
Index $ 2^{4} \cdot 3^{2} $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_6.C_2^4$
Order: \(96\)\(\medspace = 2^{5} \cdot 3 \)
Index: \(144\)\(\medspace = 2^{4} \cdot 3^{2} \)
Exponent: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Generators: $\langle(8,9)(10,13)(11,14)(12,15), (9,11)(10,12), (8,15)(9,12)(10,11)(13,14), (10,12)(13,15), (1,3,2), (8,14)(9,11)(10,12)(13,15)\rangle$ Copy content Toggle raw display
Nilpotency class: $2$
Derived length: $2$

The subgroup is characteristic (hence normal), a semidirect factor, nonabelian, elementary for $p = 2$ (hence nilpotent, solvable, supersolvable, monomial, and hyperelementary), and metabelian.

Ambient group ($G$) information

Description: $(C_2^2\times C_6):S_4^2$
Order: \(13824\)\(\medspace = 2^{9} \cdot 3^{3} \)
Exponent: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Derived length:$4$

The ambient group is nonabelian and solvable. Whether it is monomial has not been computed.

Quotient group ($Q$) structure

Description: $S_3\times S_4$
Order: \(144\)\(\medspace = 2^{4} \cdot 3^{2} \)
Exponent: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Automorphism Group: $S_3\times S_4$, of order \(144\)\(\medspace = 2^{4} \cdot 3^{2} \)
Outer Automorphisms: $C_1$, of order $1$
Nilpotency class: $-1$
Derived length: $3$

The quotient is nonabelian, monomial (hence solvable), and rational.

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$C_2^2\times C_2^6.C_3^4.C_2^4$
$\operatorname{Aut}(H)$ $S_4^2:C_2^2$, of order \(2304\)\(\medspace = 2^{8} \cdot 3^{2} \)
$W$$C_2^3:S_4$, of order \(192\)\(\medspace = 2^{6} \cdot 3 \)

Related subgroups

Centralizer:$C_6\times A_4$
Normalizer:$(C_2^2\times C_6):S_4^2$
Complements:$S_3\times S_4$
Minimal over-subgroups:$C_3\times Q_8:A_4$$D_4:C_6^2$$C_3\times Q_8:A_4$$C_{12}.C_2^4$$D_{12}:C_2^3$$(C_2\times C_{12}):D_4$$C_3\times C_2\wr C_2^2$$(C_2\times C_{12}):D_4$
Maximal under-subgroups:$D_4:C_6$$C_6\times D_4$$D_4:C_2^2$

Other information

Number of conjugacy classes in this autjugacy class$1$
Möbius function$-72$
Projective image$(C_2\times C_6):S_4^2$