Properties

Label 1376.5.4.e1.a1
Order $ 2^{3} \cdot 43 $
Index $ 2^{2} $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_{344}$
Order: \(344\)\(\medspace = 2^{3} \cdot 43 \)
Index: \(4\)\(\medspace = 2^{2} \)
Exponent: \(344\)\(\medspace = 2^{3} \cdot 43 \)
Generators: $b, c^{2}, b^{4}, b^{2}$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary ($p = 2,43$), hyperelementary, metacyclic, metabelian, a Z-group, and an A-group).

Ambient group ($G$) information

Description: $C_2^2:C_{344}$
Order: \(1376\)\(\medspace = 2^{5} \cdot 43 \)
Exponent: \(344\)\(\medspace = 2^{3} \cdot 43 \)
Nilpotency class:$2$
Derived length:$2$

The ambient group is nonabelian, elementary for $p = 2$ (hence nilpotent, solvable, supersolvable, monomial, and hyperelementary), and metabelian.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_{21}:(C_2^4.C_2^3)$
$\operatorname{Aut}(H)$ $C_2^2\times C_{42}$, of order \(168\)\(\medspace = 2^{3} \cdot 3 \cdot 7 \)
$\operatorname{res}(S)$$C_2^2\times C_{42}$, of order \(168\)\(\medspace = 2^{3} \cdot 3 \cdot 7 \)
$\card{\operatorname{ker}(\operatorname{res})}$\(4\)\(\medspace = 2^{2} \)
$W$$C_1$, of order $1$

Related subgroups

Centralizer:$C_2\times C_{344}$
Normalizer:$C_2\times C_{344}$
Normal closure:$C_2\times C_{344}$
Core:$C_{172}$
Minimal over-subgroups:$C_2\times C_{344}$
Maximal under-subgroups:$C_{172}$$C_8$
Autjugate subgroups:1376.5.4.e1.b1

Other information

Number of subgroups in this conjugacy class$2$
Möbius function$0$
Projective image$D_4$