Properties

Label 1376.49.172.b1
Order $ 2^{3} $
Index $ 2^{2} \cdot 43 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$D_4$
Order: \(8\)\(\medspace = 2^{3} \)
Index: \(172\)\(\medspace = 2^{2} \cdot 43 \)
Exponent: \(4\)\(\medspace = 2^{2} \)
Generators: $bc, d^{129}$ Copy content Toggle raw display
Nilpotency class: $2$
Derived length: $2$

The subgroup is normal, a semidirect factor, nonabelian, a $p$-group (hence nilpotent, solvable, supersolvable, monomial, elementary, and hyperelementary), metacyclic (hence metabelian), and rational.

Ambient group ($G$) information

Description: $C_{172}.C_2^3$
Order: \(1376\)\(\medspace = 2^{5} \cdot 43 \)
Exponent: \(172\)\(\medspace = 2^{2} \cdot 43 \)
Nilpotency class:$2$
Derived length:$2$

The ambient group is nonabelian, elementary for $p = 2$ (hence nilpotent, solvable, supersolvable, monomial, and hyperelementary), and metabelian.

Quotient group ($Q$) structure

Description: $C_2\times C_{86}$
Order: \(172\)\(\medspace = 2^{2} \cdot 43 \)
Exponent: \(86\)\(\medspace = 2 \cdot 43 \)
Automorphism Group: $S_3\times C_{42}$, of order \(252\)\(\medspace = 2^{2} \cdot 3^{2} \cdot 7 \)
Outer Automorphisms: $S_3\times C_{42}$, of order \(252\)\(\medspace = 2^{2} \cdot 3^{2} \cdot 7 \)
Nilpotency class: $1$
Derived length: $1$

The quotient is abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), elementary for $p = 2$ (hence hyperelementary), and metacyclic.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_{42}\times A_4^2.D_4$
$\operatorname{Aut}(H)$ $D_4$, of order \(8\)\(\medspace = 2^{3} \)
$\operatorname{res}(S)$$D_4$, of order \(8\)\(\medspace = 2^{3} \)
$\card{\operatorname{ker}(\operatorname{res})}$\(336\)\(\medspace = 2^{4} \cdot 3 \cdot 7 \)
$W$$C_2^2$, of order \(4\)\(\medspace = 2^{2} \)

Related subgroups

Centralizer:$D_4\times C_{43}$
Normalizer:$C_{172}.C_2^3$
Complements:$C_2\times C_{86}$
Minimal over-subgroups:$D_4\times C_{43}$$D_4:C_2$$C_2\times D_4$
Maximal under-subgroups:$C_2^2$$C_4$

Other information

Number of subgroups in this autjugacy class$18$
Number of conjugacy classes in this autjugacy class$18$
Möbius function$-2$
Projective image$C_2^3\times C_{86}$