Properties

Label 1376.46.344.a1
Order $ 2^{2} $
Index $ 2^{3} \cdot 43 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_2^2$
Order: \(4\)\(\medspace = 2^{2} \)
Index: \(344\)\(\medspace = 2^{3} \cdot 43 \)
Exponent: \(2\)
Generators: $c, d^{86}$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is normal, central (hence abelian, nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), a $p$-group (hence elementary and hyperelementary), metacyclic, and rational.

Ambient group ($G$) information

Description: $C_2^4:C_{86}$
Order: \(1376\)\(\medspace = 2^{5} \cdot 43 \)
Exponent: \(172\)\(\medspace = 2^{2} \cdot 43 \)
Nilpotency class:$2$
Derived length:$2$

The ambient group is nonabelian, elementary for $p = 2$ (hence nilpotent, solvable, supersolvable, monomial, and hyperelementary), and metabelian.

Quotient group ($Q$) structure

Description: $C_2^2\times C_{86}$
Order: \(344\)\(\medspace = 2^{3} \cdot 43 \)
Exponent: \(86\)\(\medspace = 2 \cdot 43 \)
Automorphism Group: $C_{42}\times \PSL(2,7)$
Outer Automorphisms: $C_{42}\times \PSL(2,7)$
Nilpotency class: $1$
Derived length: $1$

The quotient is abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group) and elementary for $p = 2$ (hence hyperelementary).

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_2^4.C_2^4.(C_{42}\times S_3).C_2$
$\operatorname{Aut}(H)$ $S_3$, of order \(6\)\(\medspace = 2 \cdot 3 \)
$\operatorname{res}(S)$$C_2$, of order \(2\)
$\card{\operatorname{ker}(\operatorname{res})}$\(21504\)\(\medspace = 2^{10} \cdot 3 \cdot 7 \)
$W$$C_1$, of order $1$

Related subgroups

Centralizer:$C_2^4:C_{86}$
Normalizer:$C_2^4:C_{86}$
Minimal over-subgroups:$C_2\times C_{86}$$C_2^3$$C_2\times C_4$$C_2^3$
Maximal under-subgroups:$C_2$$C_2$

Other information

Number of subgroups in this autjugacy class$3$
Number of conjugacy classes in this autjugacy class$3$
Möbius function$8$
Projective image$C_2^2\times C_{86}$