Properties

Label 1376.36.43.a1.a1
Order $ 2^{5} $
Index $ 43 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_2^2\times C_8$
Order: \(32\)\(\medspace = 2^{5} \)
Index: \(43\)
Exponent: \(8\)\(\medspace = 2^{3} \)
Generators: $a, b, c^{43}$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is characteristic (hence normal), maximal, a direct factor, central (hence abelian, nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), a $2$-Sylow subgroup (hence a Hall subgroup), and a $p$-group (hence elementary and hyperelementary).

Ambient group ($G$) information

Description: $C_2^2\times C_{344}$
Order: \(1376\)\(\medspace = 2^{5} \cdot 43 \)
Exponent: \(344\)\(\medspace = 2^{3} \cdot 43 \)
Nilpotency class:$1$
Derived length:$1$

The ambient group is abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group) and elementary for $p = 2$ (hence hyperelementary).

Quotient group ($Q$) structure

Description: $C_{43}$
Order: \(43\)
Exponent: \(43\)
Automorphism Group: $C_{42}$, of order \(42\)\(\medspace = 2 \cdot 3 \cdot 7 \)
Outer Automorphisms: $C_{42}$, of order \(42\)\(\medspace = 2 \cdot 3 \cdot 7 \)
Nilpotency class: $1$
Derived length: $1$

The quotient is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary, hyperelementary, metacyclic, metabelian, a Z-group, and an A-group), a $p$-group, and simple.

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$C_2^3:A_4.C_{42}.C_2^2$
$\operatorname{Aut}(H)$ $C_2^4:S_4$, of order \(384\)\(\medspace = 2^{7} \cdot 3 \)
$\operatorname{res}(\operatorname{Aut}(G))$$C_2^4:S_4$, of order \(384\)\(\medspace = 2^{7} \cdot 3 \)
$\card{\operatorname{ker}(\operatorname{res})}$\(42\)\(\medspace = 2 \cdot 3 \cdot 7 \)
$W$$C_1$, of order $1$

Related subgroups

Centralizer:$C_2^2\times C_{344}$
Normalizer:$C_2^2\times C_{344}$
Complements:$C_{43}$
Minimal over-subgroups:$C_2^2\times C_{344}$
Maximal under-subgroups:$C_2\times C_8$$C_2\times C_8$$C_2\times C_8$$C_2\times C_8$$C_2\times C_8$$C_2\times C_8$$C_2^2\times C_4$

Other information

Möbius function$-1$
Projective image$C_{43}$