Properties

Label 1376.36.16.a1.d1
Order $ 2 \cdot 43 $
Index $ 2^{4} $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_{86}$
Order: \(86\)\(\medspace = 2 \cdot 43 \)
Index: \(16\)\(\medspace = 2^{4} \)
Exponent: \(86\)\(\medspace = 2 \cdot 43 \)
Generators: $ac^{172}, c^{8}$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is normal, a direct factor, cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary ($p = 2,43$), hyperelementary, metacyclic, metabelian, a Z-group, and an A-group), and central.

Ambient group ($G$) information

Description: $C_2^2\times C_{344}$
Order: \(1376\)\(\medspace = 2^{5} \cdot 43 \)
Exponent: \(344\)\(\medspace = 2^{3} \cdot 43 \)
Nilpotency class:$1$
Derived length:$1$

The ambient group is abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group) and elementary for $p = 2$ (hence hyperelementary).

Quotient group ($Q$) structure

Description: $C_2\times C_8$
Order: \(16\)\(\medspace = 2^{4} \)
Exponent: \(8\)\(\medspace = 2^{3} \)
Automorphism Group: $C_2\times D_4$, of order \(16\)\(\medspace = 2^{4} \)
Outer Automorphisms: $C_2\times D_4$, of order \(16\)\(\medspace = 2^{4} \)
Nilpotency class: $1$
Derived length: $1$

The quotient is abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), a $p$-group (hence elementary and hyperelementary), and metacyclic.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_2^3:A_4.C_{42}.C_2^2$
$\operatorname{Aut}(H)$ $C_{42}$, of order \(42\)\(\medspace = 2 \cdot 3 \cdot 7 \)
$\operatorname{res}(S)$$C_{42}$, of order \(42\)\(\medspace = 2 \cdot 3 \cdot 7 \)
$\card{\operatorname{ker}(\operatorname{res})}$\(64\)\(\medspace = 2^{6} \)
$W$$C_1$, of order $1$

Related subgroups

Centralizer:$C_2^2\times C_{344}$
Normalizer:$C_2^2\times C_{344}$
Complements:$C_2\times C_8$ $C_2\times C_8$ $C_2\times C_8$ $C_2\times C_8$
Minimal over-subgroups:$C_2\times C_{86}$$C_2\times C_{86}$$C_2\times C_{86}$
Maximal under-subgroups:$C_{43}$$C_2$
Autjugate subgroups:1376.36.16.a1.a11376.36.16.a1.b11376.36.16.a1.c11376.36.16.a1.e11376.36.16.a1.f1

Other information

Möbius function$0$
Projective image$C_2\times C_8$