Subgroup ($H$) information
| Description: | $C_9$ |
| Order: | \(9\)\(\medspace = 3^{2} \) |
| Index: | \(150\)\(\medspace = 2 \cdot 3 \cdot 5^{2} \) |
| Exponent: | \(9\)\(\medspace = 3^{2} \) |
| Generators: |
$b^{4}$
|
| Nilpotency class: | $1$ |
| Derived length: | $1$ |
The subgroup is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary, hyperelementary, metacyclic, metabelian, a Z-group, and an A-group) and a $p$-group.
Ambient group ($G$) information
| Description: | $C_{15}^2.S_3$ |
| Order: | \(1350\)\(\medspace = 2 \cdot 3^{3} \cdot 5^{2} \) |
| Exponent: | \(90\)\(\medspace = 2 \cdot 3^{2} \cdot 5 \) |
| Derived length: | $3$ |
The ambient group is nonabelian, monomial (hence solvable), and an A-group.
Automorphism information
While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.
| $\operatorname{Aut}(G)$ | $C_5^2:C_9.C_6.C_2^3$ |
| $\operatorname{Aut}(H)$ | $C_6$, of order \(6\)\(\medspace = 2 \cdot 3 \) |
| $\operatorname{res}(S)$ | $C_6$, of order \(6\)\(\medspace = 2 \cdot 3 \) |
| $\card{\operatorname{ker}(\operatorname{res})}$ | \(72\)\(\medspace = 2^{3} \cdot 3^{2} \) |
| $W$ | $C_2$, of order \(2\) |
Related subgroups
| Centralizer: | $C_3\times C_9$ | ||
| Normalizer: | $C_3\times D_9$ | ||
| Normal closure: | $C_5^2:C_9$ | ||
| Core: | $C_3$ | ||
| Minimal over-subgroups: | $C_5^2:C_9$ | $C_3\times C_9$ | $D_9$ |
| Maximal under-subgroups: | $C_3$ |
Other information
| Number of subgroups in this conjugacy class | $25$ |
| Möbius function | $-1$ |
| Projective image | $C_{15}^2.S_3$ |