Properties

Label 1344.9941.224.a1
Order $ 2 \cdot 3 $
Index $ 2^{5} \cdot 7 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_6$
Order: \(6\)\(\medspace = 2 \cdot 3 \)
Index: \(224\)\(\medspace = 2^{5} \cdot 7 \)
Exponent: \(6\)\(\medspace = 2 \cdot 3 \)
Generators: $c, d^{2}$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is characteristic (hence normal) and cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary ($p = 2,3$), hyperelementary, metacyclic, metabelian, a Z-group, and an A-group).

Ambient group ($G$) information

Description: $(C_2^2\times C_6):D_{28}$
Order: \(1344\)\(\medspace = 2^{6} \cdot 3 \cdot 7 \)
Exponent: \(84\)\(\medspace = 2^{2} \cdot 3 \cdot 7 \)
Derived length:$2$

The ambient group is nonabelian, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, and metabelian.

Quotient group ($Q$) structure

Description: $C_2^2\times D_{28}$
Order: \(224\)\(\medspace = 2^{5} \cdot 7 \)
Exponent: \(28\)\(\medspace = 2^{2} \cdot 7 \)
Automorphism Group: $F_7\times C_2^6:(C_2\times S_4)$, of order \(129024\)\(\medspace = 2^{11} \cdot 3^{2} \cdot 7 \)
Outer Automorphisms: $C_2^5.(C_6\times S_4)$
Nilpotency class: $-1$
Derived length: $2$

The quotient is nonabelian, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, and metabelian.

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$(C_2^5\times C_{42}).C_6.C_2^5$
$\operatorname{Aut}(H)$ $C_2$, of order \(2\)
$\card{W}$\(2\)

Related subgroups

Centralizer:$C_{42}.C_2^4$
Normalizer:$(C_2^2\times C_6):D_{28}$
Minimal over-subgroups:$C_{42}$$C_2\times C_6$$C_2\times C_6$$C_2\times C_6$$C_2\times C_6$$C_2\times C_6$$D_6$$C_{12}$$C_3:C_4$
Maximal under-subgroups:$C_3$$C_2$

Other information

Number of conjugacy classes in this autjugacy class$1$
Möbius function not computed
Projective image not computed