Properties

Label 1344.9877.48.d1
Order $ 2^{2} \cdot 7 $
Index $ 2^{4} \cdot 3 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$D_{14}$
Order: \(28\)\(\medspace = 2^{2} \cdot 7 \)
Index: \(48\)\(\medspace = 2^{4} \cdot 3 \)
Exponent: \(14\)\(\medspace = 2 \cdot 7 \)
Generators: $\left(\begin{array}{rr} 29 & 60 \\ 42 & 41 \end{array}\right), \left(\begin{array}{rr} 1 & 60 \\ 0 & 1 \end{array}\right), \left(\begin{array}{rr} 43 & 42 \\ 0 & 43 \end{array}\right)$ Copy content Toggle raw display
Derived length: $2$

The subgroup is normal, a semidirect factor, nonabelian, metacyclic (hence solvable, supersolvable, monomial, and metabelian), hyperelementary for $p = 2$, and an A-group.

Ambient group ($G$) information

Description: $C_2^2\times C_6.D_{28}$
Order: \(1344\)\(\medspace = 2^{6} \cdot 3 \cdot 7 \)
Exponent: \(84\)\(\medspace = 2^{2} \cdot 3 \cdot 7 \)
Derived length:$2$

The ambient group is nonabelian, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, and metabelian.

Quotient group ($Q$) structure

Description: $C_6.C_2^3$
Order: \(48\)\(\medspace = 2^{4} \cdot 3 \)
Exponent: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Automorphism Group: $S_3\times C_2^3:S_4$, of order \(1152\)\(\medspace = 2^{7} \cdot 3^{2} \)
Outer Automorphisms: $C_2^3:S_4$, of order \(192\)\(\medspace = 2^{6} \cdot 3 \)
Derived length: $2$

The quotient is nonabelian, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, metabelian, and an A-group.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_2^8.C_2^4.C_7.C_3^3.C_2^3$
$\operatorname{Aut}(H)$ $C_2\times F_7$, of order \(84\)\(\medspace = 2^{2} \cdot 3 \cdot 7 \)
$\card{W}$\(28\)\(\medspace = 2^{2} \cdot 7 \)

Related subgroups

Centralizer:$C_2^3\times C_6$
Normalizer:$C_2^2\times C_6.D_{28}$
Complements:$C_6.C_2^3$ $C_6.C_2^3$
Minimal over-subgroups:$C_3\times D_{14}$$C_2\times D_{14}$$C_2\times D_{14}$
Maximal under-subgroups:$C_{14}$$D_7$$C_2^2$

Other information

Number of subgroups in this autjugacy class$8$
Number of conjugacy classes in this autjugacy class$8$
Möbius function not computed
Projective image not computed