Properties

Label 1344.9877.32.d1
Order $ 2 \cdot 3 \cdot 7 $
Index $ 2^{5} $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_{42}$
Order: \(42\)\(\medspace = 2 \cdot 3 \cdot 7 \)
Index: \(32\)\(\medspace = 2^{5} \)
Exponent: \(42\)\(\medspace = 2 \cdot 3 \cdot 7 \)
Generators: $\left(\begin{array}{rr} 13 & 0 \\ 0 & 13 \end{array}\right), \left(\begin{array}{rr} 1 & 60 \\ 0 & 1 \end{array}\right), \left(\begin{array}{rr} 1 & 28 \\ 0 & 1 \end{array}\right)$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is normal, a semidirect factor, and cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary ($p = 2,3,7$), hyperelementary, metacyclic, metabelian, a Z-group, and an A-group).

Ambient group ($G$) information

Description: $C_2^2\times C_6.D_{28}$
Order: \(1344\)\(\medspace = 2^{6} \cdot 3 \cdot 7 \)
Exponent: \(84\)\(\medspace = 2^{2} \cdot 3 \cdot 7 \)
Derived length:$2$

The ambient group is nonabelian, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, and metabelian.

Quotient group ($Q$) structure

Description: $C_2^3:C_4$
Order: \(32\)\(\medspace = 2^{5} \)
Exponent: \(4\)\(\medspace = 2^{2} \)
Automorphism Group: $C_2^6:D_4$, of order \(512\)\(\medspace = 2^{9} \)
Outer Automorphisms: $C_2^4:D_4$, of order \(128\)\(\medspace = 2^{7} \)
Nilpotency class: $2$
Derived length: $2$

The quotient is nonabelian, a $p$-group (hence nilpotent, solvable, supersolvable, monomial, elementary, and hyperelementary), and metabelian.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_2^8.C_2^4.C_7.C_3^3.C_2^3$
$\operatorname{Aut}(H)$ $C_2\times C_6$, of order \(12\)\(\medspace = 2^{2} \cdot 3 \)
$\card{W}$\(4\)\(\medspace = 2^{2} \)

Related subgroups

Centralizer:$C_2^3\times C_{42}$
Normalizer:$C_2^2\times C_6.D_{28}$
Complements:$C_2^3:C_4$
Minimal over-subgroups:$C_2\times C_{42}$$C_2\times C_{42}$$C_2\times C_{42}$$C_2\times C_{42}$$C_3\times D_{14}$
Maximal under-subgroups:$C_{21}$$C_{14}$$C_6$

Other information

Number of subgroups in this autjugacy class$12$
Number of conjugacy classes in this autjugacy class$12$
Möbius function not computed
Projective image not computed