Subgroup ($H$) information
| Description: | $C_2\times D_{42}$ |
| Order: | \(168\)\(\medspace = 2^{3} \cdot 3 \cdot 7 \) |
| Index: | \(8\)\(\medspace = 2^{3} \) |
| Exponent: | \(42\)\(\medspace = 2 \cdot 3 \cdot 7 \) |
| Generators: |
$b^{2}c^{3}, d^{21}, d^{14}, c^{2}, d^{6}$
|
| Derived length: | $2$ |
The subgroup is characteristic (hence normal), nonabelian, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, metabelian, and an A-group.
Ambient group ($G$) information
| Description: | $C_{84}.C_2^4$ |
| Order: | \(1344\)\(\medspace = 2^{6} \cdot 3 \cdot 7 \) |
| Exponent: | \(168\)\(\medspace = 2^{3} \cdot 3 \cdot 7 \) |
| Derived length: | $2$ |
The ambient group is nonabelian, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, and metabelian.
Quotient group ($Q$) structure
| Description: | $D_4$ |
| Order: | \(8\)\(\medspace = 2^{3} \) |
| Exponent: | \(4\)\(\medspace = 2^{2} \) |
| Automorphism Group: | $D_4$, of order \(8\)\(\medspace = 2^{3} \) |
| Outer Automorphisms: | $C_2$, of order \(2\) |
| Derived length: | $2$ |
The quotient is nonabelian, a $p$-group (hence nilpotent, solvable, supersolvable, monomial, elementary, and hyperelementary), metacyclic (hence metabelian), and rational.
Automorphism information
Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.
| $\operatorname{Aut}(G)$ | $C_{21}.(C_6\times D_4).C_2^5$ |
| $\operatorname{Aut}(H)$ | $S_3\times S_4\times F_7$, of order \(6048\)\(\medspace = 2^{5} \cdot 3^{3} \cdot 7 \) |
| $\operatorname{res}(\operatorname{Aut}(G))$ | $C_2\times D_6\times F_7$, of order \(1008\)\(\medspace = 2^{4} \cdot 3^{2} \cdot 7 \) |
| $\card{\operatorname{ker}(\operatorname{res})}$ | \(32\)\(\medspace = 2^{5} \) |
| $W$ | $S_3\times D_{14}$, of order \(168\)\(\medspace = 2^{3} \cdot 3 \cdot 7 \) |
Related subgroups
Other information
| Möbius function | $0$ |
| Projective image | $D_{42}:D_4$ |