Properties

Label 1344.9860.6.i1.b1
Order $ 2^{5} \cdot 7 $
Index $ 2 \cdot 3 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$D_8:D_7$
Order: \(224\)\(\medspace = 2^{5} \cdot 7 \)
Index: \(6\)\(\medspace = 2 \cdot 3 \)
Exponent: \(56\)\(\medspace = 2^{3} \cdot 7 \)
Generators: $a, c^{4}d^{6}, c^{7}d, c^{14}d^{6}, bd^{3}, d^{6}$ Copy content Toggle raw display
Derived length: $2$

The subgroup is nonabelian, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, and metabelian.

Ambient group ($G$) information

Description: $C_{84}.C_2^4$
Order: \(1344\)\(\medspace = 2^{6} \cdot 3 \cdot 7 \)
Exponent: \(168\)\(\medspace = 2^{3} \cdot 3 \cdot 7 \)
Derived length:$2$

The ambient group is nonabelian, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, and metabelian.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_{42}.(C_2^3\times C_6).C_2^4$
$\operatorname{Aut}(H)$ $C_8:C_2^3\times F_7$, of order \(2688\)\(\medspace = 2^{7} \cdot 3 \cdot 7 \)
$\operatorname{res}(S)$$C_2^2\times D_4\times F_7$, of order \(1344\)\(\medspace = 2^{6} \cdot 3 \cdot 7 \)
$\card{\operatorname{ker}(\operatorname{res})}$\(4\)\(\medspace = 2^{2} \)
$W$$D_4\times D_{14}$, of order \(224\)\(\medspace = 2^{5} \cdot 7 \)

Related subgroups

Centralizer:$C_2$
Normalizer:$D_8:D_{14}$
Normal closure:$D_{12}.D_{14}$
Core:$D_4:D_7$
Minimal over-subgroups:$D_{12}.D_{14}$$D_8:D_{14}$
Maximal under-subgroups:$D_4:D_7$$C_7\times D_8$$C_7:\SD_{16}$$D_4:D_7$$C_7:\SD_{16}$$C_8\times D_7$$C_7:Q_{16}$$D_8:C_2$
Autjugate subgroups:1344.9860.6.i1.a1

Other information

Number of subgroups in this conjugacy class$3$
Möbius function$1$
Projective image$D_{42}:C_2^3$