Properties

Label 1344.9860.24.y1.a1
Order $ 2^{3} \cdot 7 $
Index $ 2^{3} \cdot 3 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_7\times D_4$
Order: \(56\)\(\medspace = 2^{3} \cdot 7 \)
Index: \(24\)\(\medspace = 2^{3} \cdot 3 \)
Exponent: \(28\)\(\medspace = 2^{2} \cdot 7 \)
Generators: $ac^{21}d^{6}, c^{4}d^{6}, d^{6}, c^{14}d^{6}$ Copy content Toggle raw display
Nilpotency class: $2$
Derived length: $2$

The subgroup is nonabelian, elementary for $p = 2$ (hence nilpotent, solvable, supersolvable, monomial, and hyperelementary), and metacyclic (hence metabelian).

Ambient group ($G$) information

Description: $C_{84}.C_2^4$
Order: \(1344\)\(\medspace = 2^{6} \cdot 3 \cdot 7 \)
Exponent: \(168\)\(\medspace = 2^{3} \cdot 3 \cdot 7 \)
Derived length:$2$

The ambient group is nonabelian, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, and metabelian.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_{42}.(C_2^3\times C_6).C_2^4$
$\operatorname{Aut}(H)$ $C_6\times D_4$, of order \(48\)\(\medspace = 2^{4} \cdot 3 \)
$\operatorname{res}(S)$$C_6\times D_4$, of order \(48\)\(\medspace = 2^{4} \cdot 3 \)
$\card{\operatorname{ker}(\operatorname{res})}$\(112\)\(\medspace = 2^{4} \cdot 7 \)
$W$$C_2\times D_4$, of order \(16\)\(\medspace = 2^{4} \)

Related subgroups

Centralizer:$C_2\times C_{14}$
Normalizer:$D_8:D_{14}$
Normal closure:$C_7\times D_{12}$
Core:$C_{28}$
Minimal over-subgroups:$C_7\times D_{12}$$D_4\times C_{14}$$C_7\times D_8$$D_4:D_7$$D_4:D_7$$C_7:D_8$$C_7\times \SD_{16}$$C_7:\SD_{16}$
Maximal under-subgroups:$C_{28}$$C_2\times C_{14}$$D_4$
Autjugate subgroups:1344.9860.24.y1.b1

Other information

Number of subgroups in this conjugacy class$3$
Möbius function$8$
Projective image$D_{42}:C_2^3$