Properties

Label 1344.9860.2.a1.a1
Order $ 2^{5} \cdot 3 \cdot 7 $
Index $ 2 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_{84}.D_4$
Order: \(672\)\(\medspace = 2^{5} \cdot 3 \cdot 7 \)
Index: \(2\)
Exponent: \(168\)\(\medspace = 2^{3} \cdot 3 \cdot 7 \)
Generators: $a, d^{6}, d^{3}, c^{4}d^{6}, c^{7}, d^{4}, c^{14}d^{6}$ Copy content Toggle raw display
Derived length: $2$

The subgroup is characteristic (hence normal), maximal, a semidirect factor, nonabelian, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, and metabelian.

Ambient group ($G$) information

Description: $C_{84}.C_2^4$
Order: \(1344\)\(\medspace = 2^{6} \cdot 3 \cdot 7 \)
Exponent: \(168\)\(\medspace = 2^{3} \cdot 3 \cdot 7 \)
Derived length:$2$

The ambient group is nonabelian, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, and metabelian.

Quotient group ($Q$) structure

Description: $C_2$
Order: \(2\)
Exponent: \(2\)
Automorphism Group: $C_1$, of order $1$
Outer Automorphisms: $C_1$, of order $1$
Derived length: $1$

The quotient is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary, hyperelementary, metacyclic, metabelian, a Z-group, and an A-group), a $p$-group, simple, and rational.

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$C_{42}.(C_2^3\times C_6).C_2^4$
$\operatorname{Aut}(H)$ $C_6^2.C_2^6$
$\card{\operatorname{res}(\operatorname{Aut}(G))}$\(2304\)\(\medspace = 2^{8} \cdot 3^{2} \)
$\card{\operatorname{ker}(\operatorname{res})}$\(14\)\(\medspace = 2 \cdot 7 \)
$W$$C_2^3:D_6$, of order \(96\)\(\medspace = 2^{5} \cdot 3 \)

Related subgroups

Centralizer:$C_{14}$
Normalizer:$C_{84}.C_2^4$
Complements:$C_2$ $C_2$ $C_2$
Minimal over-subgroups:$C_{84}.C_2^4$
Maximal under-subgroups:$D_4:C_{42}$$C_{14}\times D_{12}$$C_{12}.C_{28}$$C_{21}:D_8$$C_{21}:D_8$$C_{21}:\SD_{16}$$C_{21}:\SD_{16}$$D_8:C_{14}$$D_4:D_6$

Other information

Möbius function$-1$
Projective image$D_{42}:C_2^3$