Properties

Label 1344.9827.6.f1
Order $ 2^{5} \cdot 7 $
Index $ 2 \cdot 3 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$D_4:D_{14}$
Order: \(224\)\(\medspace = 2^{5} \cdot 7 \)
Index: \(6\)\(\medspace = 2 \cdot 3 \)
Exponent: \(28\)\(\medspace = 2^{2} \cdot 7 \)
Generators: $ab^{3}, c^{2}, c^{7}, d^{9}, b^{2}, d^{6}$ Copy content Toggle raw display
Derived length: $2$

The subgroup is nonabelian, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, and metabelian.

Ambient group ($G$) information

Description: $C_{84}.C_2^4$
Order: \(1344\)\(\medspace = 2^{6} \cdot 3 \cdot 7 \)
Exponent: \(168\)\(\medspace = 2^{3} \cdot 3 \cdot 7 \)
Derived length:$2$

The ambient group is nonabelian, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, and metabelian.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$(C_{42}\times A_4).C_6.C_2^5$
$\operatorname{Aut}(H)$ $D_4\times S_4\times F_7$, of order \(8064\)\(\medspace = 2^{7} \cdot 3^{2} \cdot 7 \)
$\operatorname{res}(S)$$D_4\times S_4\times F_7$, of order \(8064\)\(\medspace = 2^{7} \cdot 3^{2} \cdot 7 \)
$\card{\operatorname{ker}(\operatorname{res})}$\(4\)\(\medspace = 2^{2} \)
$W$$C_2^2\times D_{28}$, of order \(224\)\(\medspace = 2^{5} \cdot 7 \)

Related subgroups

Centralizer:$C_2$
Normalizer:$D_{56}:C_2^2$
Normal closure:$D_4:D_{42}$
Core:$D_4:C_{14}$
Minimal over-subgroups:$D_4:D_{42}$$D_{56}:C_2^2$
Maximal under-subgroups:$D_4:C_{14}$$D_{28}:C_2$$C_2\times D_{28}$$D_4\times D_7$$D_{28}:C_2$$D_4:C_2^2$

Other information

Number of subgroups in this autjugacy class$3$
Number of conjugacy classes in this autjugacy class$1$
Möbius function$1$
Projective image$D_{42}:C_2^3$