Properties

Label 1344.9819.4.n1
Order $ 2^{4} \cdot 3 \cdot 7 $
Index $ 2^{2} $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_{12}.D_{14}$
Order: \(336\)\(\medspace = 2^{4} \cdot 3 \cdot 7 \)
Index: \(4\)\(\medspace = 2^{2} \)
Exponent: \(84\)\(\medspace = 2^{2} \cdot 3 \cdot 7 \)
Generators: $a, d^{6}, d^{21}, d^{14}, bc^{7}, c^{4}$ Copy content Toggle raw display
Derived length: $2$

The subgroup is nonabelian, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, and metabelian.

Ambient group ($G$) information

Description: $C_{84}.C_2^4$
Order: \(1344\)\(\medspace = 2^{6} \cdot 3 \cdot 7 \)
Exponent: \(168\)\(\medspace = 2^{3} \cdot 3 \cdot 7 \)
Derived length:$2$

The ambient group is nonabelian, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, and metabelian.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$(C_{42}\times A_4).C_6.C_2^5$
$\operatorname{Aut}(H)$ $C_2^2\times D_4\times F_7$, of order \(1344\)\(\medspace = 2^{6} \cdot 3 \cdot 7 \)
$\operatorname{res}(S)$$C_2^2\times D_4\times F_7$, of order \(1344\)\(\medspace = 2^{6} \cdot 3 \cdot 7 \)
$\card{\operatorname{ker}(\operatorname{res})}$\(12\)\(\medspace = 2^{2} \cdot 3 \)
$W$$C_2^2\times D_{14}$, of order \(112\)\(\medspace = 2^{4} \cdot 7 \)

Related subgroups

Centralizer:$C_6$
Normalizer:$C_{84}.C_2^3$
Normal closure:$C_{84}.C_2^3$
Core:$D_4\times C_{21}$
Minimal over-subgroups:$C_{84}.C_2^3$
Maximal under-subgroups:$D_4\times C_{21}$$C_{21}:D_4$$C_{14}:C_{12}$$C_{12}\times D_7$$C_{21}:Q_8$$D_4:D_7$$D_4:C_6$

Other information

Number of subgroups in this autjugacy class$6$
Number of conjugacy classes in this autjugacy class$3$
Möbius function$0$
Projective image$C_{42}.C_2^4$