Properties

Label 1344.9757.28.b1.a1
Order $ 2^{4} \cdot 3 $
Index $ 2^{2} \cdot 7 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_6\times Q_8$
Order: \(48\)\(\medspace = 2^{4} \cdot 3 \)
Index: \(28\)\(\medspace = 2^{2} \cdot 7 \)
Exponent: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Generators: $b, d^{42}, c^{2}d^{42}, d^{21}, d^{28}$ Copy content Toggle raw display
Nilpotency class: $2$
Derived length: $2$

The subgroup is characteristic (hence normal), nonabelian, elementary for $p = 2$ (hence nilpotent, solvable, supersolvable, monomial, and hyperelementary), and metabelian.

Ambient group ($G$) information

Description: $C_{84}.C_2^4$
Order: \(1344\)\(\medspace = 2^{6} \cdot 3 \cdot 7 \)
Exponent: \(168\)\(\medspace = 2^{3} \cdot 3 \cdot 7 \)
Derived length:$2$

The ambient group is nonabelian, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, and metabelian.

Quotient group ($Q$) structure

Description: $D_{14}$
Order: \(28\)\(\medspace = 2^{2} \cdot 7 \)
Exponent: \(14\)\(\medspace = 2 \cdot 7 \)
Automorphism Group: $C_2\times F_7$, of order \(84\)\(\medspace = 2^{2} \cdot 3 \cdot 7 \)
Outer Automorphisms: $C_6$, of order \(6\)\(\medspace = 2 \cdot 3 \)
Nilpotency class: $-1$
Derived length: $2$

The quotient is nonabelian, metacyclic (hence solvable, supersolvable, monomial, and metabelian), hyperelementary for $p = 2$, and an A-group.

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$C_{42}.(C_2^5\times C_6).C_2^2$
$\operatorname{Aut}(H)$ $C_2^4:S_4$, of order \(384\)\(\medspace = 2^{7} \cdot 3 \)
$\card{W}$\(16\)\(\medspace = 2^{4} \)

Related subgroups

Centralizer:$C_2\times C_{42}$
Normalizer:$C_{84}.C_2^4$
Minimal over-subgroups:$Q_8\times C_{42}$$C_{12}.D_4$$C_6.C_2^4$$C_6:Q_{16}$
Maximal under-subgroups:$C_2\times C_{12}$$C_3\times Q_8$$C_3\times Q_8$$C_2\times C_{12}$$C_3\times Q_8$$C_2\times Q_8$

Other information

Möbius function not computed
Projective image not computed