Properties

Label 1344.9757.112.g1.a1
Order $ 2^{2} \cdot 3 $
Index $ 2^{4} \cdot 7 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_{12}$
Order: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Index: \(112\)\(\medspace = 2^{4} \cdot 7 \)
Exponent: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Generators: $b, d^{28}, d^{42}$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary ($p = 2,3$), hyperelementary, metacyclic, metabelian, a Z-group, and an A-group).

Ambient group ($G$) information

Description: $C_{84}.C_2^4$
Order: \(1344\)\(\medspace = 2^{6} \cdot 3 \cdot 7 \)
Exponent: \(168\)\(\medspace = 2^{3} \cdot 3 \cdot 7 \)
Derived length:$2$

The ambient group is nonabelian, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, and metabelian.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_{42}.(C_2^5\times C_6).C_2^2$
$\operatorname{Aut}(H)$ $C_2^2$, of order \(4\)\(\medspace = 2^{2} \)
$\card{W}$\(2\)

Related subgroups

Centralizer:$D_{28}:C_6$
Normalizer:$C_{84}.C_2^3$
Normal closure:$C_3\times Q_8$
Core:$C_6$
Minimal over-subgroups:$C_{84}$$C_3\times Q_8$$C_2\times C_{12}$$C_3\times D_4$$C_2\times C_{12}$$C_2\times C_{12}$$C_3\times Q_8$$C_3\times Q_8$
Maximal under-subgroups:$C_6$$C_4$
Autjugate subgroups:1344.9757.112.g1.b1

Other information

Number of subgroups in this conjugacy class$2$
Möbius function not computed
Projective image not computed