Properties

Label 1344.9697.8.bh1.b1
Order $ 2^{3} \cdot 3 \cdot 7 $
Index $ 2^{3} $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_{21}:Q_8$
Order: \(168\)\(\medspace = 2^{3} \cdot 3 \cdot 7 \)
Index: \(8\)\(\medspace = 2^{3} \)
Exponent: \(84\)\(\medspace = 2^{2} \cdot 3 \cdot 7 \)
Generators: $ad^{21}, d^{12}, d^{42}, bc^{2}, d^{28}$ Copy content Toggle raw display
Derived length: $2$

The subgroup is nonabelian, metacyclic (hence solvable, supersolvable, monomial, and metabelian), and hyperelementary for $p = 2$.

Ambient group ($G$) information

Description: $C_{84}.C_2^4$
Order: \(1344\)\(\medspace = 2^{6} \cdot 3 \cdot 7 \)
Exponent: \(168\)\(\medspace = 2^{3} \cdot 3 \cdot 7 \)
Derived length:$2$

The ambient group is nonabelian, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, and metabelian.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_{21}.(C_6\times D_4).C_2^5$
$\operatorname{Aut}(H)$ $C_6^2:C_2^3$, of order \(288\)\(\medspace = 2^{5} \cdot 3^{2} \)
$\card{W}$\(24\)\(\medspace = 2^{3} \cdot 3 \)

Related subgroups

Centralizer:$C_2\times C_{14}$
Normalizer:$C_{84}.C_2^3$
Normal closure:$C_{28}.D_6$
Core:$C_3:C_{28}$
Minimal over-subgroups:$C_{28}.D_6$$C_{42}:Q_8$$C_{28}.D_6$
Maximal under-subgroups:$C_3:C_{28}$$C_{84}$$C_3:C_{28}$$C_7\times Q_8$$C_3:Q_8$
Autjugate subgroups:1344.9697.8.bh1.a1

Other information

Number of subgroups in this conjugacy class$2$
Möbius function not computed
Projective image not computed