Properties

Label 1344.9697.28.w1.a1
Order $ 2^{4} \cdot 3 $
Index $ 2^{2} \cdot 7 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_{24}:C_2$
Order: \(48\)\(\medspace = 2^{4} \cdot 3 \)
Index: \(28\)\(\medspace = 2^{2} \cdot 7 \)
Exponent: \(24\)\(\medspace = 2^{3} \cdot 3 \)
Generators: $bd^{7}, d^{28}, c^{3}d^{45}, c^{2}d^{42}, d^{42}$ Copy content Toggle raw display
Derived length: $2$

The subgroup is nonabelian, metacyclic (hence solvable, supersolvable, monomial, and metabelian), and hyperelementary for $p = 2$.

Ambient group ($G$) information

Description: $C_{84}.C_2^4$
Order: \(1344\)\(\medspace = 2^{6} \cdot 3 \cdot 7 \)
Exponent: \(168\)\(\medspace = 2^{3} \cdot 3 \cdot 7 \)
Derived length:$2$

The ambient group is nonabelian, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, and metabelian.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_{21}.(C_6\times D_4).C_2^5$
$\operatorname{Aut}(H)$ $C_2^2\times D_6$, of order \(48\)\(\medspace = 2^{4} \cdot 3 \)
$\card{W}$\(48\)\(\medspace = 2^{4} \cdot 3 \)

Related subgroups

Centralizer:$C_4$
Normalizer:$Q_{16}:D_6$
Normal closure:$C_{21}:\OD_{16}$
Core:$C_4\times S_3$
Minimal over-subgroups:$C_{21}:\OD_{16}$$S_3\times \OD_{16}$$C_8.D_6$$Q_{16}:S_3$
Maximal under-subgroups:$C_4\times S_3$$C_{24}$$C_3:C_8$$\OD_{16}$
Autjugate subgroups:1344.9697.28.w1.b1

Other information

Number of subgroups in this conjugacy class$7$
Möbius function not computed
Projective image not computed