Subgroup ($H$) information
| Description: | $S_3$ | 
| Order: | \(6\)\(\medspace = 2 \cdot 3 \) | 
| Index: | \(224\)\(\medspace = 2^{5} \cdot 7 \) | 
| Exponent: | \(6\)\(\medspace = 2 \cdot 3 \) | 
| Generators: | $bc^{2}d^{49}, d^{28}$ | 
| Derived length: | $2$ | 
The subgroup is nonabelian, a Z-group (hence solvable, supersolvable, monomial, metacyclic, metabelian, and an A-group), hyperelementary for $p = 2$, and rational.
Ambient group ($G$) information
| Description: | $C_{84}.C_2^4$ | 
| Order: | \(1344\)\(\medspace = 2^{6} \cdot 3 \cdot 7 \) | 
| Exponent: | \(168\)\(\medspace = 2^{3} \cdot 3 \cdot 7 \) | 
| Derived length: | $2$ | 
The ambient group is nonabelian, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, and metabelian.
Automorphism information
While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.
| $\operatorname{Aut}(G)$ | $C_{21}.(C_6\times D_4).C_2^5$ | 
| $\operatorname{Aut}(H)$ | $S_3$, of order \(6\)\(\medspace = 2 \cdot 3 \) | 
| $\card{W}$ | \(6\)\(\medspace = 2 \cdot 3 \) | 
Related subgroups
| Centralizer: | $Q_8\times C_{14}$ | |||
| Normalizer: | $C_{84}.C_2^3$ | |||
| Normal closure: | $D_6$ | |||
| Core: | $C_3$ | |||
| Minimal over-subgroups: | $S_3\times C_7$ | $D_6$ | $D_6$ | $D_6$ | 
| Maximal under-subgroups: | $C_3$ | $C_2$ | 
Other information
| Number of subgroups in this conjugacy class | $2$ | 
| Möbius function | not computed | 
| Projective image | not computed | 
