Subgroup ($H$) information
Description: | $D_{28}:C_6$ |
Order: | \(336\)\(\medspace = 2^{4} \cdot 3 \cdot 7 \) |
Index: | \(4\)\(\medspace = 2^{2} \) |
Exponent: | \(84\)\(\medspace = 2^{2} \cdot 3 \cdot 7 \) |
Generators: |
$ab, d^{12}, d^{21}, d^{28}, c^{2}, d^{42}$
|
Derived length: | $2$ |
The subgroup is characteristic (hence normal), nonabelian, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, and metabelian.
Ambient group ($G$) information
Description: | $C_{84}.C_2^4$ |
Order: | \(1344\)\(\medspace = 2^{6} \cdot 3 \cdot 7 \) |
Exponent: | \(168\)\(\medspace = 2^{3} \cdot 3 \cdot 7 \) |
Derived length: | $2$ |
The ambient group is nonabelian, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, and metabelian.
Quotient group ($Q$) structure
Description: | $C_2^2$ |
Order: | \(4\)\(\medspace = 2^{2} \) |
Exponent: | \(2\) |
Automorphism Group: | $S_3$, of order \(6\)\(\medspace = 2 \cdot 3 \) |
Outer Automorphisms: | $S_3$, of order \(6\)\(\medspace = 2 \cdot 3 \) |
Derived length: | $1$ |
The quotient is abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), a $p$-group (hence elementary and hyperelementary), metacyclic, and rational.
Automorphism information
Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.
$\operatorname{Aut}(G)$ | $C_{42}.(C_2^5\times C_6).C_2^2$ |
$\operatorname{Aut}(H)$ | $C_2^2\times D_4\times F_7$, of order \(1344\)\(\medspace = 2^{6} \cdot 3 \cdot 7 \) |
$\operatorname{res}(\operatorname{Aut}(G))$ | $C_2^2\times D_4\times F_7$, of order \(1344\)\(\medspace = 2^{6} \cdot 3 \cdot 7 \) |
$\card{\operatorname{ker}(\operatorname{res})}$ | \(24\)\(\medspace = 2^{3} \cdot 3 \) |
$W$ | $D_4\times D_7$, of order \(112\)\(\medspace = 2^{4} \cdot 7 \) |
Related subgroups
Other information
Möbius function | $2$ |
Projective image | $D_{42}:C_2^3$ |