Properties

Label 1344.9365.8.bd1.b1
Order $ 2^{3} \cdot 3 \cdot 7 $
Index $ 2^{3} $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_6\times D_{14}$
Order: \(168\)\(\medspace = 2^{3} \cdot 3 \cdot 7 \)
Index: \(8\)\(\medspace = 2^{3} \)
Exponent: \(42\)\(\medspace = 2 \cdot 3 \cdot 7 \)
Generators: $\left(\begin{array}{rr} 29 & 42 \\ 42 & 83 \end{array}\right), \left(\begin{array}{rr} 43 & 0 \\ 0 & 43 \end{array}\right), \left(\begin{array}{rr} 1 & 21 \\ 21 & 22 \end{array}\right), \left(\begin{array}{rr} 15 & 56 \\ 56 & 15 \end{array}\right), \left(\begin{array}{rr} 1 & 60 \\ 0 & 1 \end{array}\right)$ Copy content Toggle raw display
Derived length: $2$

The subgroup is nonabelian, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, metabelian, and an A-group.

Ambient group ($G$) information

Description: $C_{21}:D_4^2$
Order: \(1344\)\(\medspace = 2^{6} \cdot 3 \cdot 7 \)
Exponent: \(84\)\(\medspace = 2^{2} \cdot 3 \cdot 7 \)
Derived length:$2$

The ambient group is nonabelian, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, and metabelian.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_2^8\times S_3\times F_7$
$\operatorname{Aut}(H)$ $C_2\times S_4\times F_7$, of order \(2016\)\(\medspace = 2^{5} \cdot 3^{2} \cdot 7 \)
$\operatorname{res}(S)$$C_2^3\times F_7$, of order \(336\)\(\medspace = 2^{4} \cdot 3 \cdot 7 \)
$\card{\operatorname{ker}(\operatorname{res})}$\(48\)\(\medspace = 2^{4} \cdot 3 \)
$W$$D_{14}$, of order \(28\)\(\medspace = 2^{2} \cdot 7 \)

Related subgroups

Centralizer:$C_2^2\times C_6$
Normalizer:$D_{42}:C_2^3$
Normal closure:$C_{42}:C_2^3$
Core:$C_3\times D_{14}$
Minimal over-subgroups:$C_{42}:C_2^3$$C_6:D_{28}$$C_6:D_{28}$
Maximal under-subgroups:$C_3\times D_{14}$$C_2\times C_{42}$$C_3\times D_{14}$$C_3\times D_{14}$$C_3\times D_{14}$$C_2\times D_{14}$$C_2^2\times C_6$
Autjugate subgroups:1344.9365.8.bd1.a1

Other information

Number of subgroups in this conjugacy class$2$
Möbius function not computed
Projective image$D_{12}:D_{14}$