Properties

Label 1344.9365.448.a1.a1
Order $ 3 $
Index $ 2^{6} \cdot 7 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_3$
Order: \(3\)
Index: \(448\)\(\medspace = 2^{6} \cdot 7 \)
Exponent: \(3\)
Generators: $\left(\begin{array}{rr} 1 & 21 \\ 21 & 22 \end{array}\right)$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is characteristic (hence normal), a semidirect factor, cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary, hyperelementary, metacyclic, metabelian, a Z-group, and an A-group), a $3$-Sylow subgroup (hence a Hall subgroup), a $p$-group, and simple.

Ambient group ($G$) information

Description: $C_{21}:D_4^2$
Order: \(1344\)\(\medspace = 2^{6} \cdot 3 \cdot 7 \)
Exponent: \(84\)\(\medspace = 2^{2} \cdot 3 \cdot 7 \)
Derived length:$2$

The ambient group is nonabelian, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, and metabelian.

Quotient group ($Q$) structure

Description: $D_{28}:D_4$
Order: \(448\)\(\medspace = 2^{6} \cdot 7 \)
Exponent: \(28\)\(\medspace = 2^{2} \cdot 7 \)
Automorphism Group: $C_{14}.(C_6\times D_4).C_2^5$
Outer Automorphisms: $C_{12}:C_2^4$, of order \(192\)\(\medspace = 2^{6} \cdot 3 \)
Nilpotency class: $-1$
Derived length: $2$

The quotient is nonabelian, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, and metabelian.

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$C_2^8\times S_3\times F_7$
$\operatorname{Aut}(H)$ $C_2$, of order \(2\)
$\operatorname{res}(\operatorname{Aut}(G))$$C_2$, of order \(2\)
$\card{\operatorname{ker}(\operatorname{res})}$\(32256\)\(\medspace = 2^{9} \cdot 3^{2} \cdot 7 \)
$W$$C_2$, of order \(2\)

Related subgroups

Centralizer:$C_{84}:C_2^3$
Normalizer:$C_{21}:D_4^2$
Complements:$D_{28}:D_4$
Minimal over-subgroups:$C_{21}$$C_6$$C_6$$C_6$$C_6$$C_6$$C_6$$S_3$$C_6$$C_6$$C_6$$C_6$$C_6$$S_3$$S_3$$S_3$
Maximal under-subgroups:$C_1$

Other information

Möbius function not computed
Projective image$C_{21}:D_4^2$