Properties

Label 1344.9365.16.bg1.c1
Order $ 2^{2} \cdot 3 \cdot 7 $
Index $ 2^{4} $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_3\times D_{14}$
Order: \(84\)\(\medspace = 2^{2} \cdot 3 \cdot 7 \)
Index: \(16\)\(\medspace = 2^{4} \)
Exponent: \(42\)\(\medspace = 2 \cdot 3 \cdot 7 \)
Generators: $\left(\begin{array}{rr} 43 & 42 \\ 42 & 13 \end{array}\right), \left(\begin{array}{rr} 1 & 21 \\ 21 & 22 \end{array}\right), \left(\begin{array}{rr} 1 & 60 \\ 0 & 1 \end{array}\right), \left(\begin{array}{rr} 57 & 56 \\ 56 & 57 \end{array}\right)$ Copy content Toggle raw display
Derived length: $2$

The subgroup is nonabelian, metacyclic (hence solvable, supersolvable, monomial, and metabelian), hyperelementary for $p = 2$, and an A-group.

Ambient group ($G$) information

Description: $C_{21}:D_4^2$
Order: \(1344\)\(\medspace = 2^{6} \cdot 3 \cdot 7 \)
Exponent: \(84\)\(\medspace = 2^{2} \cdot 3 \cdot 7 \)
Derived length:$2$

The ambient group is nonabelian, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, and metabelian.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_2^8\times S_3\times F_7$
$\operatorname{Aut}(H)$ $C_2^2\times F_7$, of order \(168\)\(\medspace = 2^{3} \cdot 3 \cdot 7 \)
$\operatorname{res}(S)$$C_2\times F_7$, of order \(84\)\(\medspace = 2^{2} \cdot 3 \cdot 7 \)
$\card{\operatorname{ker}(\operatorname{res})}$\(48\)\(\medspace = 2^{4} \cdot 3 \)
$W$$D_7$, of order \(14\)\(\medspace = 2 \cdot 7 \)

Related subgroups

Centralizer:$C_2^2\times C_6$
Normalizer:$C_{42}:C_2^3$
Normal closure:$C_{42}:C_2^3$
Core:$C_{21}$
Minimal over-subgroups:$C_6\times D_{14}$$C_6\times D_{14}$$C_6\times D_{14}$
Maximal under-subgroups:$C_{42}$$C_3\times D_7$$C_3\times D_7$$D_{14}$$C_2\times C_6$
Autjugate subgroups:1344.9365.16.bg1.a11344.9365.16.bg1.b11344.9365.16.bg1.d1

Other information

Number of subgroups in this conjugacy class$4$
Möbius function not computed
Projective image$C_{21}:D_4^2$