Properties

Label 1344.9365.16.a1.a1
Order $ 2^{2} \cdot 3 \cdot 7 $
Index $ 2^{4} $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_2\times C_{42}$
Order: \(84\)\(\medspace = 2^{2} \cdot 3 \cdot 7 \)
Index: \(16\)\(\medspace = 2^{4} \)
Exponent: \(42\)\(\medspace = 2 \cdot 3 \cdot 7 \)
Generators: $\left(\begin{array}{rr} 43 & 0 \\ 0 & 43 \end{array}\right), \left(\begin{array}{rr} 1 & 21 \\ 21 & 22 \end{array}\right), \left(\begin{array}{rr} 1 & 60 \\ 0 & 1 \end{array}\right), \left(\begin{array}{rr} 71 & 0 \\ 0 & 71 \end{array}\right)$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is the commutator subgroup (hence characteristic and normal), the socle, abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), elementary for $p = 2$ (hence hyperelementary), and metacyclic.

Ambient group ($G$) information

Description: $C_{21}:D_4^2$
Order: \(1344\)\(\medspace = 2^{6} \cdot 3 \cdot 7 \)
Exponent: \(84\)\(\medspace = 2^{2} \cdot 3 \cdot 7 \)
Derived length:$2$

The ambient group is nonabelian, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, and metabelian.

Quotient group ($Q$) structure

Description: $C_2^4$
Order: \(16\)\(\medspace = 2^{4} \)
Exponent: \(2\)
Automorphism Group: $A_8$, of order \(20160\)\(\medspace = 2^{6} \cdot 3^{2} \cdot 5 \cdot 7 \)
Outer Automorphisms: $A_8$, of order \(20160\)\(\medspace = 2^{6} \cdot 3^{2} \cdot 5 \cdot 7 \)
Nilpotency class: $1$
Derived length: $1$

The quotient is abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), a $p$-group (hence elementary and hyperelementary), and rational.

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$C_2^8\times S_3\times F_7$
$\operatorname{Aut}(H)$ $C_6\times D_6$, of order \(72\)\(\medspace = 2^{3} \cdot 3^{2} \)
$\operatorname{res}(\operatorname{Aut}(G))$$C_2\times C_6$, of order \(12\)\(\medspace = 2^{2} \cdot 3 \)
$\card{\operatorname{ker}(\operatorname{res})}$\(5376\)\(\medspace = 2^{8} \cdot 3 \cdot 7 \)
$W$$C_2^2$, of order \(4\)\(\medspace = 2^{2} \)

Related subgroups

Centralizer:$D_4\times C_{42}$
Normalizer:$C_{21}:D_4^2$
Minimal over-subgroups:$C_2^2\times C_{42}$$C_2^2\times C_{42}$$D_6\times C_{14}$$C_6\times D_{14}$$C_6\times D_{14}$$C_6\times D_{14}$$C_2\times D_{42}$$C_2\times D_{42}$$C_2\times C_{84}$$C_6:C_{28}$$C_6:C_{28}$$C_6:C_{28}$$C_{14}:C_{12}$$C_{42}:C_4$$C_{42}:C_4$
Maximal under-subgroups:$C_{42}$$C_{42}$$C_{42}$$C_2\times C_{14}$$C_2\times C_6$

Other information

Möbius function not computed
Projective image$D_6\times D_{14}$