Subgroup ($H$) information
Description: | $C_2^2:C_{56}$ |
Order: | \(224\)\(\medspace = 2^{5} \cdot 7 \) |
Index: | \(6\)\(\medspace = 2 \cdot 3 \) |
Exponent: | \(56\)\(\medspace = 2^{3} \cdot 7 \) |
Generators: |
$b^{3}, b^{12}, d^{2}, b^{6}, d^{7}, c$
|
Nilpotency class: | $2$ |
Derived length: | $2$ |
The subgroup is the Fitting subgroup (hence characteristic, normal, nilpotent, solvable, supersolvable, and monomial), a semidirect factor, nonabelian, elementary for $p = 2$ (hence hyperelementary), and metabelian.
Ambient group ($G$) information
Description: | $C_{28}.(C_6\times D_4)$ |
Order: | \(1344\)\(\medspace = 2^{6} \cdot 3 \cdot 7 \) |
Exponent: | \(168\)\(\medspace = 2^{3} \cdot 3 \cdot 7 \) |
Derived length: | $2$ |
The ambient group is nonabelian, supersolvable (hence solvable and monomial), and metabelian.
Quotient group ($Q$) structure
Description: | $C_6$ |
Order: | \(6\)\(\medspace = 2 \cdot 3 \) |
Exponent: | \(6\)\(\medspace = 2 \cdot 3 \) |
Automorphism Group: | $C_2$, of order \(2\) |
Outer Automorphisms: | $C_2$, of order \(2\) |
Nilpotency class: | $1$ |
Derived length: | $1$ |
The quotient is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary ($p = 2,3$), hyperelementary, metacyclic, metabelian, a Z-group, and an A-group).
Automorphism information
Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.
$\operatorname{Aut}(G)$ | $C_7.(C_2^5\times C_6).C_2^3$ |
$\operatorname{Aut}(H)$ | $C_2^6:C_6$, of order \(384\)\(\medspace = 2^{7} \cdot 3 \) |
$\operatorname{res}(\operatorname{Aut}(G))$ | $C_2^5\times C_6$, of order \(192\)\(\medspace = 2^{6} \cdot 3 \) |
$\card{\operatorname{ker}(\operatorname{res})}$ | \(56\)\(\medspace = 2^{3} \cdot 7 \) |
$W$ | $C_2^2\times C_6$, of order \(24\)\(\medspace = 2^{3} \cdot 3 \) |
Related subgroups
Other information
Möbius function | $1$ |
Projective image | $D_{28}:C_6$ |