Properties

Label 1344.922.14.c1.a1
Order $ 2^{5} \cdot 3 $
Index $ 2 \cdot 7 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_2^2:C_{24}$
Order: \(96\)\(\medspace = 2^{5} \cdot 3 \)
Index: \(14\)\(\medspace = 2 \cdot 7 \)
Exponent: \(24\)\(\medspace = 2^{3} \cdot 3 \)
Generators: $b^{3}, b^{12}, c, d^{7}, b^{8}, b^{6}$ Copy content Toggle raw display
Nilpotency class: $2$
Derived length: $2$

The subgroup is nonabelian, elementary for $p = 2$ (hence nilpotent, solvable, supersolvable, monomial, and hyperelementary), and metabelian.

Ambient group ($G$) information

Description: $C_{28}.(C_6\times D_4)$
Order: \(1344\)\(\medspace = 2^{6} \cdot 3 \cdot 7 \)
Exponent: \(168\)\(\medspace = 2^{3} \cdot 3 \cdot 7 \)
Derived length:$2$

The ambient group is nonabelian, supersolvable (hence solvable and monomial), and metabelian.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_7.(C_2^5\times C_6).C_2^3$
$\operatorname{Aut}(H)$ $C_2^4:D_4$, of order \(128\)\(\medspace = 2^{7} \)
$\operatorname{res}(S)$$C_2^5$, of order \(32\)\(\medspace = 2^{5} \)
$\card{\operatorname{ker}(\operatorname{res})}$\(48\)\(\medspace = 2^{4} \cdot 3 \)
$W$$C_2^3$, of order \(8\)\(\medspace = 2^{3} \)

Related subgroups

Centralizer:$C_2\times C_{12}$
Normalizer:$(C_2\times Q_{16}):C_6$
Normal closure:$(C_2\times C_{14}):C_{24}$
Core:$C_2^2:C_8$
Minimal over-subgroups:$(C_2\times C_{14}):C_{24}$$(C_2\times Q_{16}):C_6$
Maximal under-subgroups:$C_2^2\times C_{12}$$C_2\times C_{24}$$C_2\times C_{24}$$C_2^2:C_8$

Other information

Number of subgroups in this conjugacy class$7$
Möbius function$1$
Projective image$D_{28}:C_6$