Properties

Label 1344.9073.4.b1
Order $ 2^{4} \cdot 3 \cdot 7 $
Index $ 2^{2} $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_2^2\times D_{42}$
Order: \(336\)\(\medspace = 2^{4} \cdot 3 \cdot 7 \)
Index: \(4\)\(\medspace = 2^{2} \)
Exponent: \(42\)\(\medspace = 2 \cdot 3 \cdot 7 \)
Generators: $ab, d^{6}, c^{2}, d^{21}, b^{2}, d^{14}$ Copy content Toggle raw display
Derived length: $2$

The subgroup is characteristic (hence normal), nonabelian, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, metabelian, and an A-group.

Ambient group ($G$) information

Description: $(C_2\times C_{12}):D_{28}$
Order: \(1344\)\(\medspace = 2^{6} \cdot 3 \cdot 7 \)
Exponent: \(84\)\(\medspace = 2^{2} \cdot 3 \cdot 7 \)
Derived length:$2$

The ambient group is nonabelian, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, and metabelian.

Quotient group ($Q$) structure

Description: $C_2^2$
Order: \(4\)\(\medspace = 2^{2} \)
Exponent: \(2\)
Automorphism Group: $S_3$, of order \(6\)\(\medspace = 2 \cdot 3 \)
Outer Automorphisms: $S_3$, of order \(6\)\(\medspace = 2 \cdot 3 \)
Derived length: $1$

The quotient is abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), a $p$-group (hence elementary and hyperelementary), metacyclic, and rational.

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$C_{42}.(C_2^5\times C_6).C_2^5$
$\operatorname{Aut}(H)$ $S_3\times C_2^3.\PSL(2,7)\times F_7$
$\card{W}$\(84\)\(\medspace = 2^{2} \cdot 3 \cdot 7 \)

Related subgroups

Centralizer:$C_2^2\times C_4$
Normalizer:$(C_2\times C_{12}):D_{28}$
Minimal over-subgroups:$D_{42}:D_4$$C_{84}:C_2^3$
Maximal under-subgroups:$C_2^2\times C_{42}$$C_2\times D_{42}$$C_2\times D_{42}$$C_2\times D_{42}$$C_2^2\times D_{14}$$C_2^2\times D_6$

Other information

Number of conjugacy classes in this autjugacy class$1$
Möbius function not computed
Projective image not computed