Properties

Label 1344.9073.336.h1
Order $ 2^{2} $
Index $ 2^{4} \cdot 3 \cdot 7 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_4$
Order: \(4\)\(\medspace = 2^{2} \)
Index: \(336\)\(\medspace = 2^{4} \cdot 3 \cdot 7 \)
Exponent: \(4\)\(\medspace = 2^{2} \)
Generators: $abc$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary, hyperelementary, metacyclic, metabelian, a Z-group, and an A-group) and a $p$-group.

Ambient group ($G$) information

Description: $(C_2\times C_{12}):D_{28}$
Order: \(1344\)\(\medspace = 2^{6} \cdot 3 \cdot 7 \)
Exponent: \(84\)\(\medspace = 2^{2} \cdot 3 \cdot 7 \)
Derived length:$2$

The ambient group is nonabelian, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, and metabelian.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_{42}.(C_2^5\times C_6).C_2^5$
$\operatorname{Aut}(H)$ $C_2$, of order \(2\)
$\card{W}$$1$

Related subgroups

Centralizer:$C_2^3\times C_4$
Normalizer:$C_2^3\times C_4$
Normal closure:$C_{42}:C_4$
Core:$C_2$
Minimal over-subgroups:$C_7:C_4$$C_3:C_4$$C_2\times C_4$$C_2\times C_4$$C_2\times C_4$$C_2\times C_4$
Maximal under-subgroups:$C_2$

Other information

Number of subgroups in this autjugacy class$84$
Number of conjugacy classes in this autjugacy class$2$
Möbius function not computed
Projective image not computed