Subgroup ($H$) information
| Description: | $C_4$ |
| Order: | \(4\)\(\medspace = 2^{2} \) |
| Index: | \(336\)\(\medspace = 2^{4} \cdot 3 \cdot 7 \) |
| Exponent: | \(4\)\(\medspace = 2^{2} \) |
| Generators: |
$cd^{21}$
|
| Nilpotency class: | $1$ |
| Derived length: | $1$ |
The subgroup is normal, cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary, hyperelementary, metacyclic, metabelian, a Z-group, and an A-group), and a $p$-group.
Ambient group ($G$) information
| Description: | $(C_2\times C_{12}):D_{28}$ |
| Order: | \(1344\)\(\medspace = 2^{6} \cdot 3 \cdot 7 \) |
| Exponent: | \(84\)\(\medspace = 2^{2} \cdot 3 \cdot 7 \) |
| Derived length: | $2$ |
The ambient group is nonabelian, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, and metabelian.
Quotient group ($Q$) structure
| Description: | $C_6:D_{28}$ |
| Order: | \(336\)\(\medspace = 2^{4} \cdot 3 \cdot 7 \) |
| Exponent: | \(84\)\(\medspace = 2^{2} \cdot 3 \cdot 7 \) |
| Automorphism Group: | $C_{42}.(C_2^4\times C_6).C_2$ |
| Outer Automorphisms: | $C_2^4:C_6$, of order \(96\)\(\medspace = 2^{5} \cdot 3 \) |
| Nilpotency class: | $-1$ |
| Derived length: | $2$ |
The quotient is nonabelian, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, and metabelian.
Automorphism information
While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.
| $\operatorname{Aut}(G)$ | $C_{42}.(C_2^5\times C_6).C_2^5$ |
| $\operatorname{Aut}(H)$ | $C_2$, of order \(2\) |
| $\card{W}$ | \(2\) |
Related subgroups
| Centralizer: | $C_{84}:C_2^3$ | ||||||
| Normalizer: | $(C_2\times C_{12}):D_{28}$ | ||||||
| Minimal over-subgroups: | $C_{28}$ | $C_{12}$ | $C_2\times C_4$ | $C_2\times C_4$ | $D_4$ | $C_2\times C_4$ | $Q_8$ |
| Maximal under-subgroups: | $C_2$ |
Other information
| Number of subgroups in this autjugacy class | $2$ |
| Number of conjugacy classes in this autjugacy class | $2$ |
| Möbius function | not computed |
| Projective image | not computed |