Properties

Label 1344.8698.672.a1
Order $ 2 $
Index $ 2^{5} \cdot 3 \cdot 7 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_2$
Order: \(2\)
Index: \(672\)\(\medspace = 2^{5} \cdot 3 \cdot 7 \)
Exponent: \(2\)
Generators: $d^{42}$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is characteristic (hence normal), cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary, hyperelementary, metacyclic, metabelian, a Z-group, and an A-group), stem (hence central), a $p$-group, simple, and rational.

Ambient group ($G$) information

Description: $C_2\times C_{12}.D_{28}$
Order: \(1344\)\(\medspace = 2^{6} \cdot 3 \cdot 7 \)
Exponent: \(84\)\(\medspace = 2^{2} \cdot 3 \cdot 7 \)
Derived length:$2$

The ambient group is nonabelian, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, and metabelian.

Quotient group ($Q$) structure

Description: $D_{42}:C_2^3$
Order: \(672\)\(\medspace = 2^{5} \cdot 3 \cdot 7 \)
Exponent: \(84\)\(\medspace = 2^{2} \cdot 3 \cdot 7 \)
Automorphism Group: $C_2^4.C_2^4.C_7.C_3^3.C_2^3$
Outer Automorphisms: $C_2^6.A_4.C_6$
Nilpotency class: $-1$
Derived length: $2$

The quotient is nonabelian, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, and metabelian.

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$(C_2\times C_{42}).C_2^6.C_6.C_2^6$
$\operatorname{Aut}(H)$ $C_1$, of order $1$
$\card{W}$$1$

Related subgroups

Centralizer:$C_2\times C_{12}.D_{28}$
Normalizer:$C_2\times C_{12}.D_{28}$
Minimal over-subgroups:$C_{14}$$C_6$$C_2^2$$C_2^2$$C_4$$C_4$$C_4$
Maximal under-subgroups:$C_1$

Other information

Number of conjugacy classes in this autjugacy class$1$
Möbius function not computed
Projective image not computed