Properties

Label 1344.8698.24.h1
Order $ 2^{3} \cdot 7 $
Index $ 2^{3} \cdot 3 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_{14}:C_4$
Order: \(56\)\(\medspace = 2^{3} \cdot 7 \)
Index: \(24\)\(\medspace = 2^{3} \cdot 3 \)
Exponent: \(28\)\(\medspace = 2^{2} \cdot 7 \)
Generators: $ac^{3}, d^{42}, d^{12}, b$ Copy content Toggle raw display
Derived length: $2$

The subgroup is nonabelian, metacyclic (hence solvable, supersolvable, monomial, and metabelian), hyperelementary for $p = 2$, and an A-group.

Ambient group ($G$) information

Description: $C_2\times C_{12}.D_{28}$
Order: \(1344\)\(\medspace = 2^{6} \cdot 3 \cdot 7 \)
Exponent: \(84\)\(\medspace = 2^{2} \cdot 3 \cdot 7 \)
Derived length:$2$

The ambient group is nonabelian, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, and metabelian.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$(C_2\times C_{42}).C_2^6.C_6.C_2^6$
$\operatorname{Aut}(H)$ $D_4\times F_7$, of order \(336\)\(\medspace = 2^{4} \cdot 3 \cdot 7 \)
$\card{W}$\(28\)\(\medspace = 2^{2} \cdot 7 \)

Related subgroups

Centralizer:$C_2^3$
Normalizer:$C_{14}.C_2^4$
Normal closure:$C_2^2.D_{42}$
Core:$C_2\times C_{14}$
Minimal over-subgroups:$C_{42}:C_4$$C_2^2.D_{14}$$C_{14}:Q_8$
Maximal under-subgroups:$C_2\times C_{14}$$C_7:C_4$$C_2\times C_4$

Other information

Number of subgroups in this autjugacy class$24$
Number of conjugacy classes in this autjugacy class$4$
Möbius function not computed
Projective image not computed